Re: [其他] 1+2+3+4+5+6+.....無限

看板Math作者 (追風箏的孩子)時間11年前 (2014/05/28 03:43), 11年前編輯推噓1(104)
留言5則, 1人參與, 最新討論串4/4 (看更多)
附上原始影片 https://www.youtube.com/watch?v=w-I6XTVZXww
翻譯 https://www.youtube.com/watch?v=S31vJlQu428
影片一開始的 S1 級數可以用 Cesaro summation 或是 Abel Sum 但是使用這兩種方法還能用古典求和的方法嗎? wiki 上 Ramanujan 最早的求和方法我也覺得怪怪的 1/(1 + x)^2 的展開代值應該是要在收斂半徑內 這應該不算落在收斂半徑? 影片中的那本弦論書籍-Joseph Polchinski 所做的 String Theory 網路找的到電子檔,真的有那個算式,不過他只寫說: 我們要利用這個奇怪的算式去推導某個常數... -- 肝不好 肝若好 人生是黑白的 考卷是空白的 、 ﹐ ● ●b ▎ ●> ● ▌ ﹍﹍ 囧> 幹... ▲ ■┘ ▎ ■ ▋ ︶■ 〈﹀ ∥ ▁▁∥ ▎ ﹀〉▊ 〈\ ψcockroach727 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1401219835.A.82D.html

05/28 19:54, , 1F
Ramanujan不知道,不過Cesaro跟Abel就是某種程度上擴
05/28 19:54, 1F

05/28 19:54, , 2F
展原先的求和"定義",所以有些數列以Cesaro或Abel的意
05/28 19:54, 2F

05/28 19:54, , 3F
義下收斂,但古典不收斂.
05/28 19:54, 3F

05/28 19:54, , 4F
我們可以知道的是若原先的方法收斂,則Cesaro和Abel也
05/28 19:54, 4F

05/28 19:55, , 5F
會收斂,而且收斂到相同的值
05/28 19:55, 5F
以 Cesaro 得出 1-1+1-1+1-1...= 1/2 並以古典求和方式找出 1-2+3-4+5-6...= 1/4 但是單純用 Cesaro summation, 這級數是發散的 假如用 Abel summation 來看,並且承認古典求和的方式可行 就如影片所說, 1+2+3+4+5+6...可以得到 -1/12 單純用 Abel summation, 這級數是發散的 ※ 編輯: obelisk0114 (140.112.168.210), 05/28/2014 20:29:13
文章代碼(AID): #1JXEhxWj (Math)
文章代碼(AID): #1JXEhxWj (Math)