Re: [中學] 標準差定義?(為何用平方和開根號)
※ 引述《kyoiku (生死間有大恐怖)》之銘言:
: 標準差定義是
: _
: S = {[sigma(x_i - x)^2]/n}^(1/2) (離均差平方和平均再開根號)
: 為何不用絕對值就好?
: S = [sigma|x_i - x|]/n (離均差平方和開根號再平均)
_
變異數 (1/n)*sigma(x_i-p)^2 的最小值是發生在p為x時
_
也就是說 如果p取Me或其他的估計量時 得到的變異量會比p取x還要大
要用一個量估計一筆資料的離散程度 當然希望找一個有最小變異量統計量描述這筆資料
如果現在以中位數Me作為變異中心 算出來的標準差比算術平均數還要大
這樣的統計量本身不具最小性 相對來說就產生定義上的變異(類似統計UMVUE的概念)
_
因此取x為中心是標準差以平方作定義的最佳選擇
同理 如果現在有一個變異數定義為 (1/n)*sigma|x_i-p| (離均差取絕對值)
則p取Me會是最佳選擇 以Me作為變異中心時 這個估計量的變異會有最小值
: 當初在定義的時候有甚麼考慮嗎?
: 另外第二個 S 在統計中是否有用到? ORZ
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 106.1.5.27
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1397401134.A.696.html
※ 編輯: look147 (106.1.5.27), 04/13/2014 23:12:42
→
04/14 20:37, , 1F
04/14 20:37, 1F
→
04/14 20:38, , 2F
04/14 20:38, 2F
→
04/14 20:38, , 3F
04/14 20:38, 3F
→
04/14 20:39, , 4F
04/14 20:39, 4F
→
04/14 20:40, , 5F
04/14 20:40, 5F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):