Re: [中學] 三角函數

看板Math作者 (兄弟兄弟兄弟加油!!!)時間12年前 (2013/10/20 22:12), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串107/232 (看更多)
※ 引述《sheep7940807 (焦糖瑪琪朵)》之銘言: : o o o n : sin(1 ) x sin(3 ) x … x sin(89 )=2 ,求n=? : 答案:n=-89/2 : 請問各位大大該怎麼做呢? o o o o o o 先寫成 sin(1 ) x cos(1 ) x sin(3 ) x cos(3 ) … x sin(43 ) x cos(43 ) 22 o o o o = (1/2) [sin(2 ) x sin(6 ) x ‧‧‧x sin(86 )] x sin(45 ) o o {利用 sinA x sin(60 - A) x sin(60 + A) = 1/4 sin(3A)} 22 7 o o o o = (1/2) {(1/4) [sin(6 ) x .... x sin(78 )] x sin(30 )} x sin(45 ) 37 o o o o = (1/2) x sin(45 ) x [sin(6 ) x sin(18 ) x .... x sin(78 )] -75/2 2 o o o = (2) {(1/4) x sin(18 ) x sin(54 ) x sin(30 )} -85/2 o o = (2) x sin(18 ) x sin(54 ) -89/2 = (2) 故 n=-89/2 (呼!!!! 打得好累......) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.171.79.251 ※ 編輯: jimmy451399 來自: 118.171.79.251 (10/20 22:13)
文章代碼(AID): #1IO-JGZO (Math)
討論串 (同標題文章)
文章代碼(AID): #1IO-JGZO (Math)