[中學] 複數

看板Math作者 (追風箏的孩子)時間12年前 (2013/06/23 01:42), 編輯推噓1(101)
留言2則, 1人參與, 最新討論串8/13 (看更多)
已知x,y為非零複數,且 x^2 + xy + y^2 = 0, 求(x/(x + y))^102 + (y/(x + y))^102 = ? 聽說答案是 -1 , 但是我用底下2個解法算出來都是 2 麻煩各路高手幫忙看一下問題出在哪? 問題解1 : (x-y)(x^2 + xy + y^2) = 0 (條件同乘 x-y) 可得 x^3 - y^3 = 0 , 移項 x^3 = y^3 條件同加 xy x^2 + 2xy + y^2 = xy , 可得 (x + y)^2 = xy (x/(x + y))^102 + (y/(x + y))^102 = (x^102 + y^102)/(x + y)^102 = ( (x^3)^34 + (y^3)^34 ) / ( (x + y)^2 )^51 = ( (y^3)^34 + (y^3)^34 ) / (xy)^51 = 2 * y^102 / ( (x^3)^17 * (y^3)^17 ) = 2 * y^102 / ( (y^3)^17 * (y^3)^17 ) = 2 * y^102 / y^102 = 2 問題解2 : (x-y)(x^2 + xy + y^2) = 0 (條件同乘 x-y) 可得 x^3 - y^3 = 0 , 移項 x^3 = y^3 (x/(x + y))^102 + (y/(x + y))^102 = (x^102 + y^102)/(x + y)^102 = ( (x^3)^34 + (y^3)^34 ) / (x + y)^102 = ( (y^3)^34 + (y^3)^34 ) / (x + y)^102 = 2 / (x/y + 1)^102 由上面條件同除以 y^3 (x/y)^3 = 1 令 x/y = a, a^3 = 1 的解 = 1, -0.5 ±√3/2 i 若 x/y = 1 則 x = y, x^2 + xy + y^2 = 3 x^2 = 0 將得到 x = y = 0 (不合) 所以 x/y + 1 = 0.5 ±√3/2 i 是 六次方程式 ω^6 = 1 的解 2 / (x/y + 1)^102 = 2 / ( (ω^6)^17 ) = 2 -- 肝不好 肝若好 人生是黑白的 考卷是空白的 、 ﹐ ● ●b ▎ ●> ● ▌ ﹍﹍ 囧> 幹... ▲ ■┘ ▎ ■ ▋ ︶■ 〈﹀ ∥ ▁▁∥ ▎ ﹀〉▊ 〈\ ψcockroach727 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.245.27

06/23 04:02, , 1F
似乎的確是2,下面是我的計算
06/23 04:02, 1F

06/23 04:02, , 2F
文章代碼(AID): #1HnU86DM (Math)
討論串 (同標題文章)
完整討論串 (本文為第 8 之 13 篇):
中學
2
3
中學
1
4
中學
3
7
中學
1
1
中學
1
2
中學
2
5
中學
1
1
文章代碼(AID): #1HnU86DM (Math)