Re: [微積] x^3 y''' + xy' - y = 0

看板Math作者 (Oliver)時間12年前 (2013/05/07 00:27), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ 引述《newversion (海納百川天下歸心)》之銘言: : 請問這是什麼類型的微方? 我令 z=ln x 下去做可以得到答案,但頗煩 : Let y = x^r ,then we substitute it. : We have x^r [(r -1)r(r- 2) + r - 1] = 0. : => (r-1)^3 = 0 : => r=1 三重根 : Then by "checking detail" the solution is : blah blah : 這裡的 "checking detail" 是什麼東東? : 好像每重根一次就要多乘一項 lnx This is called Euler-Cauchy equation let x=exp(t), t=ln(x) dy and, D= ── dt than, we could get x^3 y"'+xy'-y=0 => D(D-1)(D-2)y+Dy-y=0 => (D-1)^3 y=0 => y(t)= Aexp(t)+ Btexp(t)+Ct^2exp(t) => y(x)= Ax+Bxlnx+Cx[(lnx)^2] A、B、C are constants -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.243.103.61
文章代碼(AID): #1HXzdSCQ (Math)
文章代碼(AID): #1HXzdSCQ (Math)