Re: [中學] 函數求極值

看板Math作者 (杇瑣)時間13年前 (2012/11/20 19:12), 編輯推噓3(303)
留言6則, 4人參與, 最新討論串3/4 (看更多)
※ 引述《chris1117 (豆干)》之銘言: : (x-1)^5 : f(x)=------------ 其中x>1 ,求極大值 : (10x-6)^9 : 1 : 答案是------------ : (2^5)(9^9) : 是用算幾不等式嗎?用微分不好做(我知道這對各位來說很容易) : 這是中學奧數的題目,有沒有不用微分的方法? : 如何求值域範圍呢? (1/2^4)f(x) = (1/2^4)(x-1)^5 / (10x-6)^9 = [(x-1)/(10x-6)]^5 * [(1/2)/(10x-6)]^4 ≦{[5 * (x-1)/(10x-6) + 4 * (1/2)/(10x-6)]/9}^9 = {[(5x-3)/(10x-6)]/9}^9 = {[1/2]/9}^9 = 1/18^9 故極大值為 2^4/18^9 = 1/(2^5)(9^9) 等號在 (x-1)/(10x-6) = (1/2)/(10x-6) 即 x-1 = 1/2 即 x = 3/2 時成立 -- 湊了半小時... 中間是算幾不等式沒錯 有五個 (x-1)/(10x-6) 四個 (1/2)/(10x-6) -- ˊ_▂▃▄▂_ˋ. ◣          ▅▅ ▅▅ ι●╮   ./◤_▂▃▄▂_◥ \'▊   HARUHI █████ <■┘   ◤◤◥█◥◥█Δ   ISM    By-gamejye ¢|\   ▌▌ζ(▏●‵◥′●)Ψ ▏           █    ⊿Δ    /|▋ |\ ▎         ハルヒ主義      ▄█ ◥◥|◣ ‵′ ◢/'◢◢S.O.S 世界をいに盛り上げるための宮ハルヒの    -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 180.218.108.125

11/20 19:14, , 1F
耶,真的有辦法不微分就湊出來啊。受教了。
11/20 19:14, 1F

11/20 19:15, , 2F
不過我說那個公式我記得是真的有人在背。我家老爹就
11/20 19:15, 2F

11/20 19:15, , 3F
是教奧數的。
11/20 19:15, 3F

11/21 00:45, , 4F
原PO IMO@@
11/21 00:45, 4F

11/21 01:13, , 5F
我只是個 IMO 一階選訓營就被刷下來的小嫩嫩 QQ
11/21 01:13, 5F

11/21 07:18, , 6F
需要背的人應該不適合競賽數學
11/21 07:18, 6F
文章代碼(AID): #1GgsMAf5 (Math)
討論串 (同標題文章)
文章代碼(AID): #1GgsMAf5 (Math)