Re: [微積] 請問要如何求y'呢?

看板Math作者 (Hango)時間13年前 (2012/11/15 12:11), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/4 (看更多)
※ 引述《rabbit31 (Dreams)》之銘言: : 題目=>證明y=1/1+ce^-x 是y'=y-y^2的解 : 一直微不出y'=y-y^2 : orz跪求高手教教我~拜託困擾我好久~感激不盡 sol 1: plug into the eqn. -1 -2 y = (1+Cexp(-x)) => y' = (-1)*(1+Cexp(-x)) * (Cexp(-x))' by Chain rule -2 = (1+Cexp(-x)) * Cexp(-x) 2 -1 -2 y - y = (1+Cexp(-x)) - (1+Cexp(-x)) -2 -2 = (1+Cexp(-x)) *(1+Cexp(-x)-1) = (1+Cexp(-x)) * Cexp(-x) sol 2: solve the eqn. It's a Bernoulli equation. -1 -2 Let u = y => u' = -1*y y' Rewrite the equation u' + u = 1 It's a inhomogeneous first order linear equation. An obvious particular solution is u = 1. The homogeneous solution to the equation is Cexp(-x). Therefore, the general solution is u = 1 + Cexp(-x). -1 -1 So, y = u = (1+Cexp(-x)) . -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.25.105

11/15 15:07, , 1F
非常感謝您熱心的回答~謝謝
11/15 15:07, 1F
文章代碼(AID): #1Gf6jYN1 (Math)
文章代碼(AID): #1Gf6jYN1 (Math)