[微積] 多變數函數的gradient的一個證明
可否用gradient的定義證明以下這個小定理:
如果 f 和 g 是有相同定義域 D 的 n多變數函數,且在 x 都可微。
If g(x) ≠ 0, then f/g is diff. at x
g(x)▽f(x) — f(x)▽g(x)
and ▽(f/g)(x) = ————————————
[g(x)]^2
========================以下為我的想法=========================
f(x+h) f(x)
(f/g)(x+h) - (f/g)(x) = ——— - ——
g(x+h) g(x)
g(x)f(x+h) - f(x)g(x+h)
= ————————————
g(x)g(x+h)
g(x)[f(x+h) - f(x)] - f(x)[g(x+h) - g(x)]
= ——————————————————————
g(x)g(x+h)
∵ f and g are diff. at x ∴ ∣ f(x+h) - f(x) = ▽f(x)‧h + o(h)
∣
∣ g(x+h) - g(x) = ▽g(x)‧h + o(h)
g(x)[▽f(x)‧h + o(h)] - f(x)[▽g(x)‧h + o(h)]
(f/g)(x+h) - (f/g)(x) = ————————————————————————
g(x)g(x+h)
[g(x)▽f(x) - f(x)▽g(x)]‧h + g(x)o(h)-f(x)o(h)
= —————————————————————————
g(x)g(x+h)
[g(x)▽f(x) - f(x)▽g(x)] g(x)o(h)-f(x)o(h)
= —————————————‧h + —————————
g(x)g(x+h) g(x)g(x+h)
﹌﹌﹌
↑
這個要怎麼辦 ?
後面那一陀東東很容易證明是 o(h),但是前面的那一陀東西要怎麼處理
很明顯不符合可微的定義。若將前項分母的g(x+h)改寫成〔g(x) + [g(x+h)-g(x)]〕
代入後只會將整個式子搞得更噁心,且似乎也無法湊出所要證的東西…
這個問題已經困擾我一個晚上,害我失眠了…
有沒有哪個好心的神人可以解惑一下,謝謝!
感激不盡
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 106.1.225.110
推
03/10 06:32, , 1F
03/10 06:32, 1F
→
03/10 07:07, , 2F
03/10 07:07, 2F
→
03/10 07:09, , 3F
03/10 07:09, 3F
→
03/10 07:14, , 4F
03/10 07:14, 4F
→
03/10 07:16, , 5F
03/10 07:16, 5F
推
03/10 08:14, , 6F
03/10 08:14, 6F
→
03/10 08:14, , 7F
03/10 08:14, 7F
→
03/10 08:41, , 8F
03/10 08:41, 8F
→
03/10 08:42, , 9F
03/10 08:42, 9F
→
03/10 08:44, , 10F
03/10 08:44, 10F
→
03/10 08:45, , 11F
03/10 08:45, 11F
推
03/10 08:56, , 12F
03/10 08:56, 12F
→
03/10 08:57, , 13F
03/10 08:57, 13F
推
03/10 09:02, , 14F
03/10 09:02, 14F
→
03/10 09:03, , 15F
03/10 09:03, 15F
→
03/10 09:04, , 16F
03/10 09:04, 16F
→
03/10 09:04, , 17F
03/10 09:04, 17F
→
03/10 09:04, , 18F
03/10 09:04, 18F
→
03/10 09:05, , 19F
03/10 09:05, 19F
→
03/10 09:37, , 20F
03/10 09:37, 20F
→
03/10 09:38, , 21F
03/10 09:38, 21F
→
03/10 09:39, , 22F
03/10 09:39, 22F
討論串 (同標題文章)
以下文章回應了本文 (最舊先):
完整討論串 (本文為第 1 之 3 篇):