Re: [線代] 一題考古題

看板Math作者 (topos)時間14年前 (2012/02/15 16:31), 編輯推噓4(402)
留言6則, 4人參與, 最新討論串4/4 (看更多)
※ 引述《silentsecret ()》之銘言: : 若A、B為n*n實矩陣,AB=BA : 證明A、B有一共同的eigenvector : 請問大家了! over C, there exists some k that is an eigenvalue of A Let V=ker(A-kI) AB=BA => V is stable under B. So, as a morphism, we can consider the restriction B|V Again, there exists an eigenvector (in V) for B|V. Then we are done. PS.This implies that if A has n different eigenvalues,then B is diagonalizable. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 76.94.119.209 ※ 編輯: Sfly 來自: 76.94.119.209 (02/15 16:32)

02/15 16:33, , 1F
如果A.B可對角化,但存在相同λ的話敘述也會成立
02/15 16:33, 1F

02/15 16:35, , 2F
請問這裡的stable是什麼意思?
02/15 16:35, 2F

02/15 16:39, , 3F
提供名師的證明:http://ppt.cc/hczy
02/15 16:39, 3F
※ 編輯: Sfly 來自: 76.94.119.209 (02/15 16:41)

02/15 16:44, , 4F
stable: B maps V into V.
02/15 16:44, 4F

02/15 16:48, , 5F
B-invariant
02/15 16:48, 5F

02/15 16:49, , 6F
謝謝!
02/15 16:49, 6F
文章代碼(AID): #1FEsrxzz (Math)
文章代碼(AID): #1FEsrxzz (Math)