Re: [微積] 連續函數的積分與極限一題
※ 引述《cxcxvv (delta)》之銘言:
: Suppose f is continuous on [0,1]
: Define
: 1
: Xn = (n+1)∫x^n f(x) dx
: 0
: Find lim Xn
: n->infinity
: 原本以為用積分中值定理就做出來了
: 可是那個c belongs to (0,1)會depend on n
: 所以其實不能那樣做
: 那這一題要怎麼解呢?
Another way:
0, x in [0,1)
Let A_n(x) = x^(n+1). Then lim A_n(x) = A(x) = {
n→∞ 1, x = 1
1 1
And (n+1)∫ x^n f(x) dx = ∫f(x) d(x^(n+1))
0 0
1
= ∫f(x) d(A_n(x))
0
1 1
Hence, lim ∫f(x) d(A_n(x)) = ∫f(x) d(A(x)) = f(1)
n→∞ 0 0
Q.E.D.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.170.114.141
→
01/19 18:48, , 1F
01/19 18:48, 1F
→
01/19 18:48, , 2F
01/19 18:48, 2F
→
01/19 18:52, , 3F
01/19 18:52, 3F
推
01/19 18:52, , 4F
01/19 18:52, 4F
→
01/19 18:53, , 5F
01/19 18:53, 5F
→
01/19 18:54, , 6F
01/19 18:54, 6F
→
01/19 18:55, , 7F
01/19 18:55, 7F
→
01/19 18:55, , 8F
01/19 18:55, 8F
※ 編輯: CFE220 來自: 218.170.114.141 (01/19 18:55)
→
01/19 18:55, , 9F
01/19 18:55, 9F
→
01/19 18:56, , 10F
01/19 18:56, 10F
推
01/19 20:53, , 11F
01/19 20:53, 11F
推
01/19 22:53, , 12F
01/19 22:53, 12F
推
01/19 23:31, , 13F
01/19 23:31, 13F
→
01/19 23:40, , 14F
01/19 23:40, 14F
→
01/19 23:41, , 15F
01/19 23:41, 15F
→
01/19 23:41, , 16F
01/19 23:41, 16F
→
01/20 00:41, , 17F
01/20 00:41, 17F
→
01/20 07:17, , 18F
01/20 07:17, 18F
→
01/20 07:34, , 19F
01/20 07:34, 19F
→
01/20 07:35, , 20F
01/20 07:35, 20F
→
01/20 07:51, , 21F
01/20 07:51, 21F
→
01/20 10:39, , 22F
01/20 10:39, 22F
推
01/20 10:49, , 23F
01/20 10:49, 23F
→
01/20 10:50, , 24F
01/20 10:50, 24F
→
01/20 10:51, , 25F
01/20 10:51, 25F
討論串 (同標題文章)