Re: [中學] 高一方程式
※ 引述《beckda (五十倍一百倍我都)》之銘言:
: 請問x^4+x^3+x^2+x-1=0
: 要如何知道其為四個實根
: (這是一題多選題的選項 要問下列選項何者為四個實根)
: 想法
: 因式分解應該可以分 可是分不出
: 用勘根定理可是還是不能說明為四個實根
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 因為只有兩個 XD
Let f=x^4+x^3+x^2+x-1
since f is increasing on [0,+00)
and f(0)f(1)<0, so there is a unique positive zero.
For x<0,
note that f(x)=x(1+x)(1+x^2)-1 < 0 on [-1,0]
and clearly f(x) is decreasing on (-00,-1].
Thus f(x) has only 1 negative zero.
So f(x)=0 has 2 real roots.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 76.94.119.209
推
01/14 14:55, , 1F
01/14 14:55, 1F
推
01/14 14:57, , 2F
01/14 14:57, 2F
→
01/14 14:58, , 3F
01/14 14:58, 3F
→
01/14 14:58, , 4F
01/14 14:58, 4F
推
01/14 15:05, , 5F
01/14 15:05, 5F
→
01/14 15:07, , 6F
01/14 15:07, 6F
→
01/14 15:38, , 7F
01/14 15:38, 7F
→
01/14 16:01, , 8F
01/14 16:01, 8F
討論串 (同標題文章)