Re: [線代] 線性獨立

看板Math作者 (阿鄉)時間14年前 (2011/10/20 23:52), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/4 (看更多)
※ 引述《jacky7987 (憶)》之銘言: : Let V be a vector space over a infinite field F and v_1,...,v_n are linearly : independent over F. Show that, for any v_1,...,v_n in V, : u_1+a*v_1,...,u_n+a*v_n : are linearly independent over F for all but finitely many a in F : 感謝大家:) 你的題目有很多 v_i,....我假設 u_j 是任意的, v_i 是獨立的 We may consider W=span{u_1,...u_n,v_1,...,v_n} and then choose a basis B={b_j} such that B contains all v_i's. Let dimW=s and u_j=\sum_{i=1}^s a_{ji}b_j. A=(a_{ji}) is a s x n matrix. Consider D=(d_{ji}), d_{ii}=a_{ii}+a for all i=1,..,n We want to make D be a matrix of rank n. D'=(d_{ji}), j,i=1,...,n. If det(D') is nonzero, then D has rank n. But det(D') is nonzero for all but finitely many a. QED. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.249.176.202 ※ 編輯: yusd24 來自: 111.249.176.202 (10/20 23:53)

10/21 06:03, , 1F
謝謝 手殘打錯了
10/21 06:03, 1F
文章代碼(AID): #1Ee4Ev5G (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 4 篇):
線代
2
14
文章代碼(AID): #1Ee4Ev5G (Math)