[線代] 一個證明

看板Math作者 (self)時間14年前 (2011/08/23 20:08), 編輯推噓1(103)
留言4則, 2人參與, 最新討論串1/3 (看更多)
Let A be n x m matrix and B be an m x n matrix over C. Show that "I_n-AB is invertible if and only if I_m-BA is invertible". 是書中一例 書上用反證-- --> 假設I_m-BA 不 invertible, 去證I_n-AB 不 invertible 然後反向就同理 -------------------------- 那如果我用 若I_n-AB invertible 證 則I_m-BA invertible 反向同理 原本想用 [thm]:Ax=0 只有零解 iff A is invertible 去做以下: "已知(I_n-BA) invertible, 設(I_m-BA)x=0 去推出x恆為零向量 (只有零解) 故可逆" 不知這樣的路行得通嗎? 我個人做的話 後來就要證Ax=0只有零解 然後就.....了 因為看起來矩陣A的資訊好少 但是因為一個matrix 可逆的 充要條件 差不多有四,五個 甚至會更多(才讀一下就這樣了) 所以我幾乎可以相信有其它突破點 但我都試不太出來 ---還是說 根本就有不一樣的切入面 可以解決這問題---- 所以上來請教大家 有興趣的人都試試看 ˋ(′~‵")ˊ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.190 ※ 編輯: bemyself 來自: 140.112.241.190 (08/23 20:09)

08/23 20:59, , 1F
可以直接驗證 Im+B(In-AB)^{-1}A 是 Im-BA 的 inv..
08/23 20:59, 1F

08/23 21:00, , 2F
(在假設In-AB可逆的情況下)
08/23 21:00, 2F

08/23 21:45, , 3F
我用樓上的方法證明了Im+B(In-AB)^{-1}A確是Im-BA的
08/23 21:45, 3F

08/23 21:46, , 4F
inverse!!!但是樓上是怎麼得到Im+B(In-AB)^{-1}A的呢
08/23 21:46, 4F
文章代碼(AID): #1EKvWj8s (Math)
討論串 (同標題文章)
文章代碼(AID): #1EKvWj8s (Math)