Re: [中學]99南區教甄 Q45

看板Math作者 (突破天際的手指)時間14年前 (2011/06/16 03:26), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/4 (看更多)
※ 引述《annzi (打桌球)》之銘言: : a,b,c 為 x^3 + x - 1=0 之三根 求a^5 +b^5 +c^5=? ans:-5 : 謝謝 a + b + c = 0 ab + bc + ca = 1 abc = -1 =>a^2 + b^2 + c^2=( a + b + c )^2 - 2(ab + bc + ca) = -2 and x^3 + x - 1 = 0 => x^3 = -x + 1 => x^5 = x^2( -x + 1 ) = x^2 + x -1 hence a^5 +b^5 +c^5 = ( a^2 + a -1 ) + ( b^2 + b -1 ) + ( c^2 + c -1 ) =( a^2 + b^2 + c^2 ) + ( a + b + c ) -3 = -5 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.90.233
文章代碼(AID): #1D-GU1-p (Math)
文章代碼(AID): #1D-GU1-p (Math)