[機統]求 t- distribution 的 variance

看板Math作者 (scrya)時間14年前 (2011/05/29 03:44), 編輯推噓2(205)
留言7則, 2人參與, 最新討論串1/4 (看更多)
t - distribution 可以用兩種方式定義: (1) Let Z be a standard normal random variable and Y be a chi-square random variable with v degrees of freedom. Also, Z and Y are independent. Define a random variable T = Z / √(Y/v), then the distribution of T is called the t- distribution. 2 (2) The distribution density function Γ((v+1)/2) t -(v+1)/2 f(t) = -------------- (1+---) √(πv) Γ(v/2) v -∞ < t < ∞ is called the t- distribution. 2 如果用(1)去算 E(T), E(T ): 1/2 -1/2 -1/2 E(T) = E(Z/(Y/v) ) = v E(Z)E(Y ) = 0 (因為E(Z) = 0) 2 2 2 -1 E(T) = E(Z /(Y/v)) = v E(Z ) E(Y ) 2 2 2 因為Z ~ χ , 所以 E(Z ) = 1 1 -1 1 E(Y ) = ------ (用積分算) v-2 所以 Var(T) = v/(v-2) 但是用(2)的話, ∞ E(T) = ∫ tf(t) = 0 (因為 tf(t) 是奇函數 ) -∞ 2 2 但是 E(T ) 好像不好求(Hint是給: Let 1+t / v = 1/u) 但是這樣一來,積分上下界不都變為0,好奇怪... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.162.123

05/29 04:35, , 1F
f is even...
05/29 04:35, 1F

05/29 11:28, , 2F
因為(1)式中已經假設Z為normal distribution 了
05/29 11:28, 2F

05/29 11:30, , 3F
根據中央極限定理,T分配要變成常數分配的話那樣本數
05/29 11:30, 3F

05/29 11:31, , 4F
n要夠大(最好能到無限大,但實務上約取30個)
05/29 11:31, 4F

05/29 11:33, , 5F
而在(2)式中,根據積分可得E(T*T)=n/n-2
05/29 11:33, 5F

05/29 11:34, , 6F
如果n很大,則n/(n-2) 趨近於 1 ,(1)(2)式所得相同
05/29 11:34, 6F

05/29 11:35, , 7F
這種解釋方法如有錯誤,還請板上先賢們指教
05/29 11:35, 7F
文章代碼(AID): #1DuL2gwR (Math)
文章代碼(AID): #1DuL2gwR (Math)