Re: [線代] linear transformation

看板Math作者 (最後的演武)時間14年前 (2011/05/14 18:42), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串3/7 (看更多)
※ 引述《mqazz1 (無法顯示)》之銘言: You can verify it by the definition of "linear" transformation. : determine whether the following are linear transformations fron : C[0, 1] into R^1 Given f,g in C[0,1], a in |R^1 : (a) L(f) = f(0) L(af+g) = (af+g)(0) = (af)(0) + g(0) = af(0) + g(0) = aL(f) + L(g) So, it is a linear transformation(functional?) : (b) L(f) = |f(0)| //絕對值 L(af) = |af(0)| = |a| |f(0)| may not equal to aL(f) if a is negative. Hence, it is not a linear transformation. : (c) L(f) = [ f(0)+f(1) ] / 2 Similarly as (a), L(af+g) = [ (af+g)(0)+(af+g)(1) ] / 2 = a[(f(0)+f(1))/2] + [(g(0)+g(1))/2] = aL(f)+L(g) : 1 2 1/2 : (d) L(f) = { ∫ [f(x)] dx } : 0 1 1/2 1 1/2 L(af) = {∫ [af(x)]^2 dx} = |a| {∫ [af(x)]^2 dx} 0 0 Similarly as (b), it is not a linear transformation. : 請問這題要怎麼判斷呢? : 謝謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.202.118

05/14 22:26, , 1F
謝謝
05/14 22:26, 1F
文章代碼(AID): #1DpboHKn (Math)
討論串 (同標題文章)
文章代碼(AID): #1DpboHKn (Math)