Re: [線代] linear transformation
※ 引述《wsx02 ()》之銘言:
: 1. Let L: R^n -> R^m be a linear transformation. If A is the standard matrix
: representation of L, then an n*n matrix B will also be a matrix representation
: of L if and only if B is similar to A
這應該隨便一本線性代數課本都會提的定理吧~
: 2. A:3*3 rank(A) = 1 可以保證 A不可對角化嗎?
舉個例子好了,A=diag(1,0,0)本身就是對角矩陣,但是rank(A)=1
: 3. V and W are finite dimensional vector spaces. Given v1, v2 in V and
: w1, w2 in W, there exists linear transformation T: V -> W such that
: T(v1) = w1 and T(v2)=w2
: 這題是false
: 請問這怎樣的情況下這個敘述會是對的?
: 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.51.105
討論串 (同標題文章)
完整討論串 (本文為第 5 之 7 篇):