Re: [線代] 幾個命題的真偽

看板Math作者 (Paul)時間15年前 (2011/02/14 07:27), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/3 (看更多)
※ 引述《Madroach (∞)》之銘言: : 寫題目的時候碰到幾個不確定的敘述 : 1)A and B are n*n matrices, AB = O, then all eigenvalues of BA are 0. Suppose λ an eigenvalue, and x≠0 an eigenvector of B.A then B.A.x=λx........(1) then A.B.A.x=0=λA.x.......(2) By (2), λ=0 or A.x=0 if λ=0, done. if A.x=0, then by (1), λ=0, done. : 2)A is a n*n matrix over R s.t A^2=-I_n, then : ( i ) n must be even 0≦det(A)^2=det(-I_n)=(-1)^n done : (ii ) tr(A)≠0 [0 1][0 1] = [-1 0] [-1 0][-1 0] [0 -1] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.89.13

02/14 10:07, , 1F
我懂了,謝謝前輩!
02/14 10:07, 1F
文章代碼(AID): #1DM6Zr1a (Math)
文章代碼(AID): #1DM6Zr1a (Math)