Re: [分析] 兩題
※ 引述《cckk3333 (皓月)》之銘言:
: 1. Let (M,d) be a metric space and f: M -> M satisfy
: d(x,y) <= d(f(x),f(y))<= 2*d(x,y) for all x,y
: Show that d(f(x),f(y)) = d(x,y) for all x,y and f is bijection
[我將題目的符號 M 改成 K, 然後 K 是 compact metric space.]
Proof.
First, we show that f is bijective. For 1-1, it is clear. So, it remains to
show that f is surjective as follows. If not, i.e., there exists a point p_0
in K such that p_0 in K - f(K). Define p_1 = f(p_0), and p_(n+1) = f(p_n)
for n = 1,2,3,... . Since K is compact and d(f(x),f(y)) ≦ 2 d(x,y) for all
x, and y, it follows f(K) is compact. So, we have
d(p_0, f(K)) = r > 0.
Notice that
d(p_n, p_(n+k)) ≧ d(p_0, p_k) ≧ r for all n, k. (1)
by the hypothesis: d(x,y) ≦ d(f(x),f(y)). (1) implies that {p_n} has no
convergent subsequence which is absurd since K is sequentially compact. From
above sayings, we have proved that f is bijective.
Next, check d(f(x),f(y)) = d(x,y) for all x, and y. Given x and y in K, there
exist two convergent sequences {x_n} and {y_n} in K with x_n →x and y_n →y.
Since f is onto, we can write f(x'_n) = x_n and f(y'_n) = y_n. Hence, there
exists two convergent subsequences {x'_n_j} and {y'_n_j} with x'_n_j → x' and
y'_n_j → y',(where n_(j+1) - n_j ≧ 2) since K is sequentially compact.
Thus, we obtain
x_n_j = f(x'_n_j) and y_n_j = f(y'_n_j).
By uniqueness of limit and continuity of f, we get x = f(x') and y = f(y').
Consider
d(x,y) = d(f(x'),f(y'))
≧ d(x',y') by d(x,y) ≦ d(f(x),f(y)) for all x, and y,
= d(lim x'_n_(j+1), lim y'_n_(j+1))
j→∞ j→∞
= d( lim f^(m) (x'_n_j), lim f^(m) (y'_n_j) ) for some m≧2,
j→∞ j→∞
≧ d( lim f^(2) (x'_n_j), lim f^(2) (y'_n_j)).
j→∞ j→∞
[use d(x,y) ≦ d(f(x),f(y)) for all x and y again]
= d(f^(2) (x'), f^(2) (y')) by continuity of f^(2)
= d(f(x), f(y)).
Therefore, d(x,y) = d(f(x),f(y)) for all x and y and the hypothesis:
d(x,y) ≦ d(f(x),f(y)) for all x, and y.
NOTE. d(x,y) ≦ d(f(x),f(y)) ≦ 2 d(x,y) for all x,y 中的 "2" 改成大於等於 1
的數都可以,其目的在保證 f 為 K 上之連續函數。
--
Good taste, bad taste are fine, but you can't have no taste.
--
※ 編輯: math1209 來自: 140.113.25.169 (01/19 13:06)
推
01/19 14:01, , 1F
01/19 14:01, 1F
推
01/19 14:15, , 2F
01/19 14:15, 2F
→
01/19 15:02, , 3F
01/19 15:02, 3F
→
01/19 15:02, , 4F
01/19 15:02, 4F
→
01/19 15:13, , 5F
01/19 15:13, 5F
→
01/19 15:14, , 6F
01/19 15:14, 6F
→
01/19 15:14, , 7F
01/19 15:14, 7F
推
01/19 15:16, , 8F
01/19 15:16, 8F
→
01/19 15:17, , 9F
01/19 15:17, 9F
→
01/19 15:17, , 10F
01/19 15:17, 10F
→
01/19 15:17, , 11F
01/19 15:17, 11F
→
01/19 16:26, , 12F
01/19 16:26, 12F
→
01/19 16:27, , 13F
01/19 16:27, 13F
討論串 (同標題文章)