[分析] 兩題
1. Let (M,d) be a metric space and f: M -> M satisfy
d(x,y) <= d(f(x),f(y))<= 2*d(x,y) for all x,y
Show that d(f(x),f(y)) = d(x,y) for all x,y and f is bijection
2. Let f: R -> R be a bounded function. Prove that f is continuous if and
only if the graph = { (x,y) | y = f(x) } of f is a closed subset of R^2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.166.69.9
推
01/18 22:58, , 1F
01/18 22:58, 1F
→
01/18 23:00, , 2F
01/18 23:00, 2F
→
01/18 23:02, , 3F
01/18 23:02, 3F
推
01/18 23:05, , 4F
01/18 23:05, 4F
→
01/18 23:07, , 5F
01/18 23:07, 5F
推
01/18 23:43, , 6F
01/18 23:43, 6F
推
01/18 23:44, , 7F
01/18 23:44, 7F
推
01/18 23:46, , 8F
01/18 23:46, 8F
推
01/18 23:48, , 9F
01/18 23:48, 9F
推
01/18 23:51, , 10F
01/18 23:51, 10F
→
01/18 23:57, , 11F
01/18 23:57, 11F
→
01/18 23:58, , 12F
01/18 23:58, 12F
推
01/19 00:00, , 13F
01/19 00:00, 13F
討論串 (同標題文章)