Re: [分析] Apostol上的exercise
在放棄之後找到解答:
If S contains no smallest element then S is empty because individual elements
of N are finite. But S is nonempty.
Therefore S contains a smallest element.
這句話:S is empty because individual elements of N are finite的意思,
我看不太懂是什麼, S is empty的原因是因為正整數是(數值?)有限的,那和
no smallest elemeny 的關聯是什麼?
-----------------------------------------------------------
因為我覺得說每一個正整數都大於等於1,是可以用的事實,且由此提供了
S contains no smallest element,這樣的S一個lower bound,感覺好像可以拿來用
而且根據公理,每兩個數都可比較出大於,等於,或小於的關係,
那如果一個包含1和其他(不一定所有)正整數的集合,為何不能宣稱1是smallest member?
Definition: A set of real numbers is called an inductive set if it has the
following two properties:
(1) The number 1 is in the set.
(2) For every x in the set, the number x+1 is also in the set.
Definition: A real number is called a positive integer if it belongs to every
inductive set.
從以上的定義可以推得"The set of all positive integers is the intersection of
all inductive sets"嗎?
而且由定義:
(a)"1"應該是一個positive integer吧
(b) 2,3, 4,... 也是 positive integers
(c) "0","-1" 不是,因為取正實數集,他是一個inductive set,但不包含-1, 0,所以不是
=> 由此可以推得: 每一個positive integer都大於等於1(不行?)
因為想試試看去了解一些數學證明解法的思考方式,來面對高等微積分程度的數學,
可是好像有些東西就是弄不好
希望有人能幫忙...
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.251.161.172
※ 編輯: yueayase 來自: 111.251.161.172 (01/17 02:57)
※ 編輯: yueayase 來自: 111.251.161.172 (01/17 03:25)
推
01/17 08:09, , 1F
01/17 08:09, 1F
→
01/17 08:09, , 2F
01/17 08:09, 2F
→
01/17 08:09, , 3F
01/17 08:09, 3F
→
01/17 08:10, , 4F
01/17 08:10, 4F
→
01/17 08:11, , 5F
01/17 08:11, 5F
→
01/17 08:11, , 6F
01/17 08:11, 6F
推
01/17 10:59, , 7F
01/17 10:59, 7F
→
01/17 11:01, , 8F
01/17 11:01, 8F
→
01/17 17:02, , 9F
01/17 17:02, 9F
→
01/17 17:02, , 10F
01/17 17:02, 10F
→
01/17 17:07, , 11F
01/17 17:07, 11F
→
01/17 17:08, , 12F
01/17 17:08, 12F
→
01/17 17:44, , 13F
01/17 17:44, 13F
→
01/17 17:45, , 14F
01/17 17:45, 14F
討論串 (同標題文章)
完整討論串 (本文為第 3 之 4 篇):