Re: [分析] Apostol上的exercise

看板Math作者 (scrya)時間15年前 (2011/01/17 00:24), 編輯推噓1(101)
留言2則, 1人參與, 最新討論串2/4 (看更多)
嘗試第二次: Proof: Let S be the subset of R. If 1 ∈ S, then 1 is the smallest member of S since each interger x ≧ 1. If 1 is not in S, assume S contains no smallest element. If x ∈ S, by our assumption, x is not the smallest memeber. Then, we can find a integer y ∈ S such that 1 ≦ y < x. 1 1 Again, by our assumption, we can find an integet y ∈ S such that 1 ≦ y < y 2 2 1 Continue this process, we get 1≦y < y < ... < y1 < x and y y ... y , x ∈ S n n-1 n, n-1, , 1 Therefore, 1 ∈ S => contradiction. So, the statement is true. 看起來好像沒有問題了? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.161.172

01/17 00:56, , 1F
你這樣證等於已經假定整個N有最小元素(叫做1)
01/17 00:56, 1F

01/17 01:05, , 2F
你可以google: the well-ordering principle
01/17 01:05, 2F
文章代碼(AID): #1DCnlRWy (Math)
文章代碼(AID): #1DCnlRWy (Math)