討論串[理工] [工數] ODE
共 38 篇文章

推噓1(1推 0噓 5→)留言6則,0人參與, 最新作者EGGELP (放屁會流湯)時間15年前 (2010/08/02 12:04), 編輯資訊
0
0
1
內容預覽:
http://www.lib.ntou.edu.tw/exam/light/94/2.pdf. 第2題的b小題wronskian 解法是什麼方法阿...不用幫我解. --. 發信站: 批踢踢實業坊(ptt.cc). ◆ From: 111.253.106.13.

推噓1(1推 0噓 4→)留言5則,0人參與, 最新作者LK08 (no)時間15年前 (2010/07/29 23:27), 編輯資訊
0
0
0
內容預覽:
題目:. xy'=y-(y-x)^3 求此方程式在起始條件y(1)=2下之特解. 解答:. 因數變換. u = y-x u'=y'-1. 方程式變成. x(u'+1) = u+x-u^3 ==> du/(u-u^3) = dx/x. 再用變數分離法解出. (y-x)^2. -------------

推噓2(2推 0噓 1→)留言3則,0人參與, 最新作者Tall781218 (小犬)時間15年前 (2010/07/28 02:26), 編輯資訊
0
0
1
內容預覽:
1. (x+1)y"-(x+2)y'+y=(e^x)(x+1)^2. try yh=e^mx 得 e^x為一齊性解. 令y=e^xu 代入原ode 即可求出u. 通解y = ue^x. 2. x^2y"+xy'+(x^2-1/4)y=x^(3/2). y1=(sinx)/(x^1/2). 已知一齊性
(還有106個字)

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者p23j8a4b9z (我是小牙籤~)時間15年前 (2010/07/28 01:41), 編輯資訊
0
0
0
內容預覽:
(x+1)y"-(x+2)y'+y=(e^x)(x+1)^2. 求特解 答案是(0.5x^2+x)e^x. 這題我用因式分解法去做. 但是答案好像不太對 跟答案有些差距. 有人可以提供解法嗎?. x^2y"+xy'+(x^2-1/4)y=x^(3/2). as y1=(sinx)/(x^1/2) 求

推噓1(1推 0噓 1→)留言2則,0人參與, 最新作者lionichiro (阿暐~~!)時間15年前 (2010/05/31 16:15), 編輯資訊
0
0
1
內容預覽:
y"+4y=sin2t. 用待定係數法跟參數變換法所求出來的答案是否不一樣??. 請高手解答!!. 用待定係數算出來好像是y=1/8 sin2t-1/4 tcos2t. --. 嘟嘟飆! TAKE轟! OPEN! 甘蔗盜! 我們是最英俊的獅子. ○_ ○_/ \○/\○/\○/\○/ 甘○ 我們有最