討論串[理工] 線代
共 120 篇文章

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者ILzi ( 並不好笑 )時間13年前 (2012/11/02 22:53), 編輯資訊
0
0
0
內容預覽:
當m>n時,. 因為每一行都有pivot. 代表[A|b]的reduced row echelon form可以寫成. [1 0 0 ... 0| c1 ]. [0 1 0 ... 0| c2 ]. [0 0 1 ... 0| c3 ]. [. . . . .| . ]. [. . . . .| .
(還有238個字)

推噓6(6推 0噓 15→)留言21則,0人參與, 最新作者KAINTS (RUKAWA)時間13年前 (2012/11/02 22:40), 編輯資訊
0
0
0
內容預覽:
1.If every column of an m*n matrix A contains a pivot. position,then the matrix equation Ax=b is consistent. for every b in R^n.. If every row of an m
(還有203個字)

推噓0(0推 0噓 4→)留言4則,0人參與, 最新作者fifisuccess (fifi)時間13年前 (2012/10/30 22:47), 編輯資訊
0
0
2
內容預覽:
http://ppt.cc/4_gC. http://ppt.cc/15O_. 我想問的是第一張他說 矩陣做列運算他的行向量的關係沒有變. 意思是他行向量的線性組合沒變 但是行空間改變了是嗎?!. 第二張可以請大家我解釋他要表達的意思嗎?!. 他跟第一張有甚麼差別... 謝謝大家^^. --.

推噓3(3推 0噓 7→)留言10則,0人參與, 最新作者KAINTS (RUKAWA)時間13年前 (2012/10/30 21:50), 編輯資訊
0
0
0
內容預覽:
Every subspace has an orthogonal basis. True. Every inner product space has an orthogonal basis. True. 第二個是因為每個內積空間皆存在basis,所以可以利用GSO得到. 一組 orthogonal

推噓12(12推 0噓 11→)留言23則,0人參與, 最新作者ILzi ( 並不好笑 )時間13年前 (2012/10/28 21:23), 編輯資訊
0
0
0
內容預覽:
依照定義, T. 對所有x€R^n,x Ax>0. 現在取A=[1 0],則A為正定,但卻不可逆,選B. [0 0]. 以上論點是錯的,可以忽略. T. c是正確的,取x=[0 ... 0 1 0 ... 0 -1 0 ...0] ,其中xi=1,xj=-1. T. 則x Ax = Aii+Ajj-
(還有424個字)