Re: [理工] 線代

看板Grad-ProbAsk作者 (~口卡口卡 修~)時間13年前 (2011/04/10 13:11), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串6/120 (看更多)
※ 引述《lxy351 (kklin)》之銘言: : Find the determinant of the n*n matrix : ┌ ┐ : │ a+b ab 0 0 … 0 0 0 │ : │ 1 a+b ab 0 … 0 0 0 │ : │ 0 1 a+b ab … 0 0 0 │ : A = │ … … … … … … … … │ : │ 0 0 0 0 … 1 a+b ab │ : │ 0 0 0 0 … 0 1 a+b │ : └ ┘ : Let T and U be linear transformations with standard matrices A and : (A^T)A, respectively. Let T be onto. : (a) Show whether U is onto, on-to-one, or invertible. : (b) What is the dimension of the null space of U? Explain your answer. : 這二題不知道怎麼下手~ 麻煩各位高手幫忙 謝謝 --- 1. let A_n denote the n by n matrix A and let D(n) = det(A_n) then we can use the cofactor expansion of the matrix property to get the recurrence relation of D(n) : D(n) = (a+b)*D(n-1) - ab*D(n-2) with D(1) = a+b D(2) = a^2 + ab + b^2 this can be solved by using generating function : a^(n+1) - b^(n+1) det(A_n) = D(n) = ┌ ───────── if a≠b │ a - b │ └ (n+1)*a^n if a=b 2. (a) assume T: W → V , and W = span{ w1, w2, ..., wn} V = span{ v1, v2, ..., vm} since T is onto for any yεV , there exists xεW , s.t. y = T(x) or [y]_V = A([x]_W) it means that the collection { [y]_V | yεV } can be spanned by the column vectors of A so A is at least a full-row rank's matrix → r(A) = m≦n → (A^T)A is ┌ invertible if m=n └ not invertible if m<n hence the mapping U : ┌ does not belong to that three be mentioned if ker{T} ≠ {0} └ is invertible if ker{T} = {0} (b) rank{U} = rank{(A^T)A} = rank{A} = rank{T} hence nullity{U} = dim{Im{T}} - rank{U} = dim{Im{T}} - rank{T} ---- 有錯煩請指正︿︿ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.211.136

04/13 11:51, , 1F
謝謝
04/13 11:51, 1F
文章代碼(AID): #1DeJll6U (Grad-ProbAsk)
討論串 (同標題文章)
本文引述了以下文章的的內容:
理工
0
1
完整討論串 (本文為第 6 之 120 篇):
理工
5
8
理工
理工
1
5
理工
0
1
理工
1
1
理工
理工
1
2
理工
4
15
文章代碼(AID): #1DeJll6U (Grad-ProbAsk)