Re: [理工] [離散]-生成函數
※ 引述《assassin88 (Ace)》之銘言:
: Let x,y,z,w >= 0, and w is odd integer.
: w + 2x + 2y + 5z = 30
: What is thenumber of solution to find by generating-function.
: 有點奇怪的解..麻煩指導了~感謝
---
考慮
2
f(x) = (x+x^3+x^5+...)(1+x^2+x^4+...) (1+x^5+x^10+...)
x 1 1
= ─── * ───── * ─── for |x|<1
1-x^2 (1-x^2)^2 1-x^5
x 1
= ─── * ─────
1-x^5 (1-x^2)^3
∞ 5k ∞ r+2 2r
= x * Σ x * Σ C x
k=0 r=0 2
滿足 1+5k+2r = 30 的非負整數解有
(k,r) = (1,12) 、 (3,7) 、 (5,2)
因此根據加法原理
x^30 的係數 = C(14,2) + C(9,2) + C(4,2) 即為所求
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.141.151
推
02/24 15:21, , 1F
02/24 15:21, 1F
→
02/24 15:22, , 2F
02/24 15:22, 2F
→
02/24 15:24, , 3F
02/24 15:24, 3F
三個相加沒錯
因為我係數都是記 C(-3,r) (-x^2)^r
C(-3,r) = C(r+2,2)*(-1)^r
忘了把 (-1)^2r 拿掉了QQ
※ 編輯: doom8199 來自: 140.113.141.151 (02/24 15:28)
→
02/24 15:27, , 4F
02/24 15:27, 4F
→
02/24 15:27, , 5F
02/24 15:27, 5F
※ 編輯: doom8199 來自: 140.113.141.151 (02/24 15:28)
→
02/24 15:29, , 6F
02/24 15:29, 6F
→
02/24 15:30, , 7F
02/24 15:30, 7F
推
02/24 15:39, , 8F
02/24 15:39, 8F
→
02/24 15:40, , 9F
02/24 15:40, 9F
→
02/24 15:40, , 10F
02/24 15:40, 10F
推
02/24 18:46, , 11F
02/24 18:46, 11F
討論串 (同標題文章)