Re: [理工] [工數]-ODE

看板Grad-ProbAsk作者 (~口卡口卡 修~)時間16年前 (2009/10/29 17:10), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串61/280 (看更多)
※ 引述《a1133333 (阿傑)》之銘言: : y''-4y'+4y=x^3e^2x + xe^2x --- (D-2)(D-2)y = (x^3 + x)e^(2x) ____(1) 令 u = (D-2)y 所以 (1)式  → ┌ u' - 2u = (x^3 + x)e^(2x) ____(2)            └ y' - 2y = u ____(3) from (2) → [u*e^(-2x)]' = x^3 + x → u*e^(-2x) = ∫ (x^3 + x) dx = x^4/4 + x^2/2 + C1 → u = (x^4/4 + x^2/2 + C1)*e^(2x) 帶回(3)式 from (3) → y' - 2y = (x^4/4 + x^2/2 + C1)*e^(2x) → [y*e^(-2x)]' = (x^4/4 + x^2/2 + C1) → y*e^(-2x) = ∫ x^4/4 + x^2/2 + C1 dx = x^5/20 + x^3/6 + C1*x + C2 or y = (x^5/20 + x^3/6 + C1*x + C2)*e^(2x) ----- 其它正規方法: (找 yp) known yc = (C1 + C2*x)e^(2x) by solving y''-4y'+4y=0 <1> Method of Undetermined Coefficients: set yp = x^2*(ax^3 + bx^2 + cx + d)e^(2x) determine a、b、c、d <2> Variation of Parameters: set yp = u(x)*y1 + v(x)*y2 then solve : ┌ u'(x)*y1 + v'(x)*y2 = 0 for u'(x)、v'(x)             └ u'(x)*y1' + v'(x)*y2' = f(x) with ┌ y1 = e^(2x)              │ y2 = xe^(2x)              └ f(x) = (x^3 + x)e^(2x) <1> <2> are incomplete for exercise (老早想學某人說這句話XD) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.141.151 ※ 編輯: doom8199 來自: 140.113.141.151 (10/29 17:14)

10/30 23:24, , 1F
請問為什麼是多乘上x^2不是乘上x
10/30 23:24, 1F

10/31 03:32, , 2F
因為會和 yc 的根重複到
10/31 03:32, 2F
文章代碼(AID): #1AwLmW8b (Grad-ProbAsk)
討論串 (同標題文章)
文章代碼(AID): #1AwLmW8b (Grad-ProbAsk)