Re: [理工] [線代]-矩陣

看板Grad-ProbAsk作者 (曉風)時間16年前 (2009/09/16 15:48), 編輯推噓1(102)
留言3則, 2人參與, 最新討論串2/13 (看更多)
※ 引述《yesa315 (XD)》之銘言: : 請問可以找到對稱A及斜對稱B 使得AB=I嗎 : 答案是 NO : 有高手可以解釋嗎? : 謝謝 A=A^T -B=B^T 由AB=I可知 A=B^-1 B=A^-1 由B=A^-1=(A^T)^-1=(A^-1)^T=B^T=-B 這樣B=-B =>B=0 不合 SO Ans:NO 這樣 是你要的嗎? -- 為者常成.行者常至 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.214.165 ※ 編輯: iyenn 來自: 123.193.214.165 (09/16 15:58)

09/16 16:33, , 1F
A B不保證是實矩陣 不一定可逆吧!
09/16 16:33, 1F

09/16 20:22, , 2F
不可逆的矩陣乘起來根本不可能是 I,I 可逆啊
09/16 20:22, 2F

09/16 20:34, , 3F
sorry 用det(AB)=det(A)det(B)=det(I)=1 故知A B皆可逆...
09/16 20:34, 3F
文章代碼(AID): #1Ai9XQmf (Grad-ProbAsk)
討論串 (同標題文章)
文章代碼(AID): #1Ai9XQmf (Grad-ProbAsk)