作者查詢 / rick6304

總覽項目: 發文 | 留言 | 暱稱
作者 rick6304 在 PTT [ Math ] 看板的留言(推文), 共12則
限定看板:Math
看板排序:
全部Gossiping15009Stock1665LoL1586home-sale1272car1233MuscleBeach441WomenTalk398Kaohsiung317watch267PublicServan242MobileComm196FTV188japanavgirls182Aquarium158movie156biker147Mix_Match141Perfume_Shop128FCU_Talk107KoreaDrama94FuMouDiscuss87optical83marvel80Examination79PC_Shopping77sex69WorldCup48joke46Plant34Suit_Style34SuperBike33Boy-Girl31PublicIssue29Gov_owned28Perfume27Salary27WindowsPhone25HatePolitics24Storage_Zone23Teacher23CarShop20specialman18rent-exp15Steam15Math12OverClocking11Tainan10YOLO9Beauty8BeautySalon8Miaoli8Tech_Job8Ame_Casual7aqua-shop7KR_Entertain7L_TalkandCha7PingTung7SENIORHIGH7Taoyuan7Chiayi6TW-history6AfterPhD5cookclub5HardwareSale5NBA5Olympics_ISG5FixMyHouse4hardware4Key_Mou_Pad4Marginalman4money4Nantou4Road_Running4SMSlife4StupidClown4Violation4AC_In3C_Chat3e-shopping3KS98-3023L_TaiwanPlaz3MakeUp3NCYU_Fst_983pharmacist3PhD3Shu-Lin3ShuangHe3SongShan3Sub_Strategy3Tea3Yunlin3AllTogether2Buddhism2Childhood2ChungLi2Finance2forsale2historia2Hsinchu2HsinYi2IA2kawaii2Keelung2KUAS2Laser_eye2Lawyer2Loan2marriage2MenTalk2Militarylife2NTU2PokeMon2Ptt-Press2Railway2Taitung2TaiwanDrama2teeth_salon2TW-language2TW_Entertain2againstDams1Anchors1ask1Aves1bicycle1BigShiLin1CareerPlan1cat1CFantasy1ChangHua1ChineseMed1creditcard1CrossStrait1CVS1DeathNote1Disabled1DragonNest1Economics1fastfood1feminine_sex1FITNESS1FJU1Folklore1FongShan1G-REX1gallantry1GTA1HK-movie1HsinChuang1Hualien1I-Lan1job1KMT1Koei1KS94-3201KSU1LAW1Law-Service1lesbian1Lifeismoney1LinKou1MACAU1MartialArts1media-chaos1meditation1medstudent1Military1mobilesales1model1Mongolia1NCHUS1NCU_Talk1Neihu1NetSecurity1nobunyaga1NSYSU1Old-Games1Oni_soul1paranormal1part-time1PresidentLi1PSP-PSV1pts1PU_Family1SAN-YanYi1Sangokumusou1ScienceNote1SouthPark1sp_teacher1studyteacher1swim1SYSOP1T-I-R1TaichungBun1Test1TFG05Book1THULAW1TigerBlue1TKU_EE_92C1Tobacco1ToS1USC1Wanhua1WarCraft1Women_Picket1<< 收起看板(204)
首頁
上一頁
1
下一頁
尾頁
[機統] 期望值大於0的遊戲一定賺嗎?
[ Math ]42 留言, 推噓總分: +7
作者: bjiyxo - 發表於 2015/09/17 19:17(10年前)
33Frick6304: 之前做專題有看過類似的書 但書名忘了 結論是09/18 15:32
34Frick6304: 投千萬分之一的錢去玩C09/18 15:32
[線代] 不同向量空間如何做內積?
[ Math ]23 留言, 推噓總分: +1
作者: rick6304 - 發表於 2015/05/26 21:51(10年前)
5Frick6304: 意思是說 只要滿足內積空間的定義 R3向量不一定要是05/26 23:18
6Frick6304: a*a1+b*b1+c*c1 是嗎?05/26 23:18
11Frick6304: 那所以對任意向量空間 我可以自己定規則是嗎?05/26 23:21
13Frick6304: 不好意思 可否請教 內積的抽象定義是指?05/26 23:23
16Frick6304: 抱歉又有問題..u內積v定義是 絕對值u*v*uv夾角05/26 23:39
17Frick6304: 但...怎麼知道多項式或矩陣的絕對值...05/26 23:39
20Frick6304: 那是剛翻課本的 所以那個 只能說明R^N的內積05/26 23:57
21Frick6304: 而正確的內積是滿足微基說的 共軛 線性 正定 是嗎?05/26 23:58
22Frick6304: 或是說 可以用在任意向量空間的內積定義05/26 23:59
23Frick6304: 感謝感謝重看過一次我懂了 謝謝05/27 00:29
首頁
上一頁
1
下一頁
尾頁