作者查詢 / kirimaru73

總覽項目: 發文 | 留言 | 暱稱
作者 kirimaru73 在 PTT [ Math ] 看板的留言(推文), 共21則
限定看板:Math
看板排序:
全部C_Chat83852Magic27881DIABLO15417Baseball10438YUGIOH6598AC_In3158StarCraft3043Hunter1971Hearthstone1919Isayama1786Suckcomic1756Touhou1531LAW1056PttLifeLaw883BlizzHeroes762PCReDive592Old-Games470joke342AOE336Little-Games334Koei200StupidClown144puzzle123PushDoll122TurtleSoup109Gintama85Steam74Gossiping71Dynasty69DeathNote66ONE_PIECE64EYESHIELD2146pal42AI_Art40SWORD38C_ChatBM37WorldCup35Sportcenter33BlueArchive32ELSWORD29Violation27JOJO25H-GAME24Elephants23Math21MrFullswing21RumikoTWorld19PSP-PSV18Marginalman17Billiard16GO16movie16KanColle15PokeMon15Monkeys14LoL13GTA11NARUTO11CPBL10Examination10SportComic10Browsers9ChainChron9Minecraft9PlayStation9Rockman9Falcom8FuMouDiscuss8Lions8WOW8Chan_Mou7Cobras7MLB7SlamDunk7streetfight7tajen7TRG7CGU-Med-956DNF6FAIRYTAIL6graduate6I-Lan6KS98-3026NBA6SAN-YanYi6tcfsh69th3046BabyBears5CFantasy5Dart5Drama-Ticket5HardwareSale5HSNU_8545KenAkamatsu5PCman5watch5Aves4BB_Online4C_and_CPP4C_BOO4ChaCha234ck54th3164dlsh-7th-3034Dragons4Emulator4FatMonkeys4FJU-KENDO4hololive4KS91-3234LightNovel4MobileComm4NCCU02_TUR4NCUFingrad034NTUChallenge4Paradox4pighead4SSSH-13th3054TKU-IE944weiyin4YUYUHAKUSHO4APH3balaz3BBO_Mobile3CGU_EE983CLHu3DMM_GAMES3Eagles3HCSH_10th3123JH36th3053junji-ITO3L_TalkandCha3LinKou3LTK3Salesperson3SCU_ACC_96A3TypeMoon3Whales3YP92-3113YZU_MBA973Beauty2BLEACH2C_GenreBoard2CCU_COMM_ANT2CGSH88th3082DET_Tigers2e-shopping2FJU-Stat96A2FlashWolves2Guardians2GuardRookies2HatePolitics2HsinChuang2Key_Mou_Pad2kochikame2kodomo2KS94-3202media-chaos2MenTalk2mobilesales2Nanoha2NCCU04_DIP2NCKU_MEPhC2Nintama2NTUEE1152NUK_AC1002OverWatch2PlayBaseball2PuzzleDragon2Railway2Sabermetrics2SoftbankHawk2SportLottery2SuckcomicBM2Sunrise2THU_Talk2tyart2VR2WCDragons2WhiteEyes2YZU_CN99A2Ancient1Android1ArakawaCow1Arknights1asciiart1Asian-MLB1AzurLane1b92902xxx1BayStars1car1Childhood1chinese-ball1Christianity1CHSH-93-3041CHSH-94-3191ck50th3231ck56th3041ck57th3201ck58th3071cksh82nd3031cksh82nd3081cksh83rd3101cksh85th3141ClashRoyale1CMU_chorus1CMU_CM441CMWang1ComeHere1Conan1CourtBasebal1CPU_CP7311CSI1CSMU-AC921CSMU-MIS921CSMU-Psy1CTSH923011CYCUEL95A1DaJen3011dog1DotA21EarthScience1Eda_Pitcher1EthnosSport1Expansion071FiremanLife1FJU-ACCR931FJU-ACCR941FJU_Chiayun1FJU_PSY0941FJUecobasket1FSHS-95-3081Future-Star1GBF1GO_FATE1Hamster1HC-th11-1121HCHS923161HCKuo1HisShark1HisSoftBall1hockey1HotBloodYuan1HSHS1Hsinchu1HsinTien1HsinYi1HSNU_10081HSNU_11431HSNU_9201HSNU_9611HSNU_j1021ID_Problem1IdolMaster1INSECT-931Insurance1iOS1japanavgirls1JinYong1juniorhigh1K_baseball1kawaii1Keelung1KERORO1KLSH1Korea1KS88-3011KS93-3041KS93-3161KS94-3071KTPS41th6101Kyoto_Ani1L_SecretGard1LeafKey1Lefty1Live1Mabinogi1maevsoftball1MapleStory1MartialArts1marvel1Mavericks1medstudent1MH1MiHoYo1MIRAGE_LAB1MJ_Soul1Modchip1model1MRT1Mudran1NCCU06_PF1NCCU09_BA1NCCUEcoSport1NCHU_MBA981nchumis1011NCKU-Stat-941NDHU-dc951NDHU-phy971NDMC-N561NEHS19th41NEURO1NitroPlus1Notebook1NTNU-HISBK1NTUastclub1NTUCL-BASKET1NTUmed001NTUT_EE490A1NUK_EE100A1NUU_Talk1Olympics_ISG1paranormal1PathofExile1pesoftball1pet1pts1PttHistory1PVC-GK1rabbit1Rayark1Rays1RO1RSSH93_3021Sangokumusou1ScienceNote1SCU_CIS-92A1SCU_Talk1Seiya1SFGiants1shinkai1shoes1Shu-Lin1ShuangHe1SMSlife1Softball1SongShan1SouthPark1SP2_Baseball1specialman1Starbucks1StatSoftball1Stephen1Stock1StoneAge1Storage_Zone1Sub_Strategy1SurvivalGame1TA_AN1TamShui1TBBT1TCFSH70th3091TCFSH70th3181TCFSH70TH3221tennisprince1Test1TFG08Music1TFSHS1TFSHS62th3051TFSHS65th3161TFSHS66th3201TFSHS69th3141TFSHS69th3181THU-CHE-Soft1THU_BA20001THU_PMP1TigerBlue1Tigers1TKU_EW94B1TKU_trans1TMU9791Tobacco1TTU-US941twin1TYSH48-3011Tyukaitiban1Vtuber1WhiteSox1XBOX1YAKYU1YASUHIRO1young-jiang1YUYU1<< 收起看板(381)
首頁
上一頁
1
下一頁
尾頁
Re: [機統] 一個機率悖論問題
[ Math ]21 留言, 推噓總分: +4
作者: arrenwu - 發表於 2023/01/09 08:27(3年前)
1Fkirimaru73: 後面幾輪的X_i都是大型同捆包,或許不能從iid出發01/09 12:16
2Fkirimaru73: 另外為了減少歧義,可以追加幾點假設:01/09 12:17
3Fkirimaru73: (1) 該遊戲僅進行正好一輪且已結束01/09 12:17
4Fkirimaru73: (2) 獨裁者玩膩了,完全沒有進行下一輪的打算01/09 12:18
5Fkirimaru73: (代表朋友生還了就是生還了,不用擔心下一輪)01/09 12:18
6Fkirimaru73: (3) 已參與遊戲的生還者不會被重複選擇01/09 12:19
7Fkirimaru73: 這樣仍然可以產生爭議,但能簡化很多問題01/09 12:19
8Fkirimaru73: 直接固定R確實不合理 那如果改為計算一整場遊戲的01/09 15:17
9Fkirimaru73: 「生存率的期望值」 = Σ(N=1到無限)P(R=N)P(Z|R=N)01/09 15:19
10Fkirimaru73: 這樣第一項是 0.10 x 0.0 (衰人)01/09 15:21
11Fkirimaru73: 第二項是 0.09 x (1/11) 第三項是 0.081 x (11/111)01/09 15:22
12Fkirimaru73: 這應該就是你說的8.9%01/09 15:24
13Fkirimaru73: 我傾向覺得單一參賽者的生存率也是8.9% 那個90%其實01/09 15:33
14Fkirimaru73: 根本是不存在的,但90%又太過真實,不知道怎麼解釋01/09 15:33
17Fkirimaru73: 好像真的是樓上所說,如果加上"某人必定參與遊戲且01/10 00:07
18Fkirimaru73: 必定在第N輪被選中"的前提,並假設遊戲會進行正好01/10 00:07
19Fkirimaru73: 一場,則無論N是多少,他的生存率都是90%01/10 00:07
20Fkirimaru73: N=1時顯而易見,N=K則代表遊戲必進行K輪以上01/10 00:08
21Fkirimaru73: 這時K輪沒有爆掉的機率也是90%01/10 00:08
Fw: [kuso] 日本未來館教育動畫
[ Math ]22 留言, 推噓總分: +11
作者: autumned - 發表於 2012/09/12 20:42(13年前)
18Fkirimaru73:這個問題是沒有公式的,雖然可以算出來09/12 19:58
19Fkirimaru73:但是對於每一個不同的N都要實際運算一次09/12 19:59
首頁
上一頁
1
下一頁
尾頁