Re: [考古] 台聯大 96 搶先報~

看板trans_math作者 (痛定思痛)時間18年前 (2007/07/14 21:00), 編輯推噓2(200)
留言2則, 2人參與, 最新討論串5/9 (看更多)
※ 引述《EricDampier (蛋皮)》之銘言: : 監試人員一時糊塗...竟然說考卷給你們帶回去當禮物 : 後來第二節他去問才知道試卷也要收回 : 所以就被拿回來當禮物了... : 甲.填充 : 1. if f is a continuous function such that : x x : ∫f(t)dt = x.exp(2x) + ∫exp(-t)f(t)dt for all x, : 0 0 : find an explicit formula for f(x) : 2. in what direction is the derivative of : (x^2+y^2) : f(x,y) = ───── at P(1,1) equal to zero? : (x^2-y^2) : 3. find the maximum value of x^2 + y^2 subject to the constraint : x^2 - 2x + y^2 - 4y = 0 : 4. suppose that f(0) = -3 and f'(x) <= 5 for all values of x : how large can f(2) possibly be? : 5. find the tangent plane of the surface : cos(πx) - x^2.y + exp(xz) + y.z = 4 : x-2y : 6. evaluate ∫∫ ─── dA , R is the parallelogram enclosed by the lines : R 3x-y : x-2y = 0 , x-2y = 4 , 3x-y = 1 , 3x-y = 8 : 7. find the area of surface cut from parabloid x^2 + y^2 - z = 0 by the : plane z = 2 : 8. evaluate ∮(6y+x)dx+(y+2x)dy , C : (x-2)^2 + (y-3)^2 = 4 : C : 乙.計算,證明 : 1. evaluate the following limits : tan(2x) n √(n^2 - j^2) : (a) lim (tan x) (b) lim (Σ ───────) : x→(π/4)- n→∞ j=1 n^2 1.(a) tan(2x)ln(tan x) lim e x→(π/4)- lim tan(2x)ln(tan x) x→(π/4)- = e ln(tan x) lim -------------- .................(∞/∞) 羅必達 x→(π/4)- cot(2x) = e sec^2(x) 1 lim ------------- -------------- x→(π/4)- tan x -2csc^2(x) = e 1 cos(x) sin^2(x) lim (----------) * (-----------) * (------------) x→(π/4)- cos^2(x) sin(x) -2 = e -1 sin(x) lim (---) * (----------) x→(π/4)- 2 cos(x) = e -1 (-----) 2 = e : ∞ n ln(n) : 2. (a) test the series Σ (-1) ──── for convergence or divergence : n=1 n-ln(n) : ∞ x^n : (b) let f(x) = Σ ── find the intervals of convergence for f' & f'' : n=1 n^2 : 3. evalute : a/√2 √(a^2-y^2) : (a) ∫ ∫ exp(x^2+y^2) dxdy : 0 y : 8 2 dydx : (b) ∫ ∫ ──── : 0 x^(1/3) y^4 + 1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.138.35 ※ 編輯: ROGER2004070 來自: 140.113.138.35 (07/14 21:02)

07/14 21:12, , 1F
感謝~恍然大悟阿~今天沒寫.原來不難XD
07/14 21:12, 1F

07/05 18:15, , 2F
正解在下篇喔
07/05 18:15, 2F
文章代碼(AID): #16cCZybn (trans_math)
討論串 (同標題文章)
文章代碼(AID): #16cCZybn (trans_math)