Re: [積分]
※ 引述《king911015 (早已放棄愛上你)》之銘言:
: x
: 設連續函數f滿足f(x) = ∫ f(t)dt + 2 ,則f(x) =__________
: 0
x
f(x) = ∫ f(t) dt + 2
0
d(f(x))
--------- = f(x)
dx
d(f(x))
--------- = dx
f(x)
ln|f(x)| = x + c_1
|f(x)| = e^(x+c_1) = (e^(c_1))(e^x)
f(x) = (e^(c_1))(e^x) , -(e^(c_1))(e^x)
f(x) = (c)(e^x) , (c = e^(c_1) , -(e^(c_1)))
0
f(0) = ∫ f(t) + 2 = 0 + 2 = 2
0
將f(0) = 2代入f(x) = (c)(e^x) 得
2 = (c)(e^0) = c => c = 2
f(x) = (2)(e^x)
: x^2
: ∫ (e^t^2 +4)dt
: 0
: Find lim --------------------- = ?
: x→0 (sinX)^2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.66.173.21
討論串 (同標題文章)
本文引述了以下文章的的內容:
積分
完整討論串 (本文為第 68 之 259 篇):
積分
2
5
積分
1
12
積分
0
4
積分
0
3
積分
1
2
積分
0
2
積分
積分
積分
1
1
積分