Re: [題目] 運動力學
y※ 引述《oskens (摸魚)》之銘言:
: [領域] 大二力學
: [來源] 課本習題
: [題目] 從距離原點b的位置釋放一直點,已知該質點受力情形為F(x)=-kx^-2
: 試證明從位子b回到原點所需的時間為 "拍"乘[ mb^3 / 8k ]^1/2
: [瓶頸] (寫寫自己的想法,方便大家為你解答)
: http://ppt.cc/fB29 總而言之就是不知道自己過程死在那裡.....
喔喔! 感覺很像場
b
───────○───→
0
..
F = ma = m x
.. -2
m x + kx = 0
.
x(0) = 0
x(0) = b
求 x(t) = 0 的 t
.
dx . k -2
── x + ── x = 0
dx m
. k -2
dx = - ── x dx
m
1 . 2 k
── x = ──── + c
2 m x
. 2 k
x = ± √ (─── + 2c)
m x
. 2 k
x(0) = ±√ (──── + 2c ) = 0
m b
k
c = - ───
m b
1
± dt = ─────────── dx
2 k 2 k
√ (──── - ───)
m x m b
x
± dt = ───────────── dx
2 k 2 k
√ (──── - ─── x )
m m b
2
m b x/b
= √(───) ────────── dx
2 k √ (1 - x/b)
2
m b x/b - 1 + 1
= √(───) ────────── dx
2 k √ (1 - x/b)
2
m b 1
= √(───) (────────── - √ (1 - x/b) ) dx
2 k √ (1 - x/b)
2
m b -1/2 1/2
= √(───) ( (1 - x/b) - (1 - x/b) ) dx
2 k
2
m b -b 1/2 2b 3/2
±t = √(───) ( ── (1 - x/b) + ─── (1 - x/b) ) + C
2 k 2 3
x(0) = b
C = b
2
m b -b 1/2 2b 3/2
±t = √(───) ( ── (1 - x/b) + ─── (1 - x/b) ) + b
2 k 2 3
x = 0 , 求 t
t 沒負 等等負的不理
2
m b -b 2b
t = √(───) (── + ── )
2 k 2 3
2
m b
= √(──) ────
2 k 6
哪來的 π 阿 冏....
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.42.85.170
→
10/10 20:11, , 1F
10/10 20:11, 1F
→
10/10 20:12, , 2F
10/10 20:12, 2F
推
10/10 20:12, , 3F
10/10 20:12, 3F
→
10/10 20:12, , 4F
10/10 20:12, 4F
推
10/10 20:15, , 5F
10/10 20:15, 5F
→
10/10 20:16, , 6F
10/10 20:16, 6F
推
10/10 20:21, , 7F
10/10 20:21, 7F
→
10/10 20:43, , 8F
10/10 20:43, 8F
推
10/10 21:17, , 9F
10/10 21:17, 9F
推
10/10 23:37, , 10F
10/10 23:37, 10F
→
10/11 07:48, , 11F
10/11 07:48, 11F
→
08/13 15:50, , 12F
08/13 15:50, 12F
→
09/17 13:51, , 13F
09/17 13:51, 13F
→
11/09 11:48, , 14F
11/09 11:48, 14F
→
01/02 14:33,
7年前
, 15F
01/02 14:33, 15F
→
07/06 22:29,
6年前
, 16F
07/06 22:29, 16F
討論串 (同標題文章)