Re: [物數] Factorial Function
※ 引述《Frobenius (▽.(▽×▽φ)=0)》之銘言:
: Show that
: n-s
: (s - n)! (-1) (2n - 2s)!
: ────── = ────────
: (2s - 2n)! (n - s)!
: Here s and n are integers with s < n. This result can be used to avoid
: negative factorials such as in the series representations of the spherical
: Neumann funtions and the Legendre functions of the second kind.
(s-n)! = (s-n)(s-n-1)!
= (s-n)(s-n-1)...(2s-2n+1)(2s-2n)!
(s-n)!/(2s-2n)! = (-1)^(n-s) (n-s)(n-s+1)...(2n-2s-1)
= (-1)^(n-s) (2n-2s-1)!/(n-s-1)!
= (-1)^(n-s) [(2n-2s)!/(2n-2s)]/[(n-s)!/(n-s)]
= (-1)^(n-s) (2n-2s)!/[2*(n-s)!]
請問哪裡錯?請指正,謝謝。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.165.184.61
推
02/24 23:11, , 1F
02/24 23:11, 1F
→
02/24 23:16, , 2F
02/24 23:16, 2F
※ 編輯: akrsw 來自: 218.165.184.61 (02/24 23:22)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 4 篇):