Re: [中學] 抛物線

看板Math作者 (奈何上天造化弄人?)時間2年前 (2023/05/21 18:33), 2年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/4 (看更多)
※ 引述《raymond92928 (raymond)》之銘言: : 過點(1,1)作抛物線y=x^2-x+m的兩切線,若兩切線互相垂直,求m的值。 : 求大神指教 另一種觀點: 設切線切點為(a, k) k = a^2 - a + m ----(1) 切線y + k = 2ax - (x + a) + 2m => y = (2a - 1)x + (2m - a - k) 因為過(1, 1) => k = a - 2 + 2m ----(2) (1) = (2) => a^2 - 2a - (m - 2) = 0 題設a有兩相異解t, r (2t - 1)(2r - 1) = -1 => 4tr - 4 + 1 = -1 => tr = 1/2 = -m + 2 => m = 3/2 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 117.56.175.175 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1684665226.A.4D2.html ※ 編輯: Honor1984 (117.56.175.175 臺灣), 05/21/2023 18:34:05
文章代碼(AID): #1aQVEAJI (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 4 篇):
文章代碼(AID): #1aQVEAJI (Math)