Re: [中學] 函數圖形

看板Math作者 (奈何上天造化弄人?)時間6年前 (2019/12/11 02:15), 編輯推噓1(100)
留言1則, 1人參與, 6年前最新討論串2/6 (看更多)
※ 引述《liang6159 (liang6159)》之銘言: : 三次函數,對稱中心(2,5),f(1)=-1,f(3)=11,試求f(x)=? y - 5 = a(x - 2)^3 + b(x - 2)^2 + c(x - 2),a =/= 0 -6 = -a + b - c 6 = a + b + c => b = 0, c = 6 - a y - 5 = a(x - 2)^3 + c(x - 2) = a(x - 2)[(x - 2)^2 + c/a] = a(x - 2)[(x - 2)^2 + (6/a) - 1] = a(x - 2)^3 + 6(x - 2) - a(x - 2) = a(x - 2)(x - 1)(x - 3) + 6x - 12 => y = a(x - 1)(x - 2)(x - 3) + (6x - 7),a =/= 0 另解: y - 5 = a(x - 2)[(x - 2)^2 - k^2] => -6 = -a[1 - k^2] => k^2 = 1 - (6/a) => y - 5 = a(x - 2)[(x - 2)^2 + (6/a) - 1] = a(x - 2)^3 + 6(x - 2) - a(x - 2) => y = a(x - 1)(x - 2)(x - 3) + (6x - 7),a =/= 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.241.152.88 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1576001708.A.904.html

12/12 20:08, 6年前 , 1F
謝謝大大分享
12/12 20:08, 1F
文章代碼(AID): #1Tx-2ia4 (Math)
文章代碼(AID): #1Tx-2ia4 (Math)