Re: [線代] 特徵向量公式@陶哲軒blog
※ 引述《isaswa (神楓)》之銘言:
: 最近被幾個朋友一直轉一篇有點內容農場的文來問我
: 那篇在說關於陶哲軒的新論文 我就跑去他的blog看了一下
: https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/
: 看起來是可以從特徵值直接算出特徵向量的公式
: 然後有朋友問我說這東西有什麼應用嗎
: 我想到的大概只有做科學計算的時候存大矩陣所需的資料量可以大幅減少
: 想看看版友們有什麼見解
: → Pieteacher : 背後有物理意義 11/17 15:42
昨天看 3B1B 的 Q&A 也提到了這東西然後給了一篇 Quanta Magazine 的文章連結
所以稍微仔細看了一些相關資料
這是那篇文章: https://tinyurl.com/s8xs6xg (各位如果英文閱讀 OK 的話滿值得一讀)
裡面有提到去找陶哲軒的三個物理學家原本是在計算微中子在傳播過程中的變化矩陣問題
好像是因為這個 Hermitian 矩陣 (和它的 minor) 的特徵值計算上相對容易
然後在計算特徵向量時他們才發現這特徵向量好像跟這些特徵值有些關係在
才去找陶哲軒問說有沒有一些已知的數學理論有說明這樣的關係這樣
那陶哲軒的 blog 文裡也有提到說這和一個之前他做過的隨機矩陣理論中的式子幾乎等價
以及在這篇 Quanta 文章之後
有人也發現了另一篇在做圖論研究的 preprint 裡出現過限定在實對稱矩陣的相同關係式
====
我自己這樣看下來是有點似懂非懂的啦 (證明也只是略看過去還沒去深究)
不過確實感覺得出來這結果或許真的會意外在不少地方找到用處
--
'Oh, Harry, don't you see?' Hermione breathed. 'If she could have done
one thing to make absolutely sure that every single person in this school
will read your interview, it was banning it!'
---'Harry Potter and the order of the phoenix', P513
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 180.177.3.123 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1574540441.A.B05.html
※ 編輯: LPH66 (180.177.3.123 臺灣), 11/24/2019 04:21:21
推
11/24 11:18,
6年前
, 1F
11/24 11:18, 1F
→
11/24 11:18,
6年前
, 2F
11/24 11:18, 2F
→
11/24 11:18,
6年前
, 3F
11/24 11:18, 3F
→
11/24 11:18,
6年前
, 4F
11/24 11:18, 4F
→
11/24 11:19,
6年前
, 5F
11/24 11:19, 5F
唔嗯...簡單翻了一下維基百科, 「微中子振盪」條目有解釋了這是在算什麼
https://tinyurl.com/yx3sl5sw
就我一個近物外行人照百科條目內容看起來是這樣:
這個計算當中有一個矩陣看起來像是有簡單的對角化形式
也就是說這矩陣的特徵值很好獲得, 麻煩的是它的特徵向量
如果它的 minor 也都有特徵值很好獲得的性質的話
那就有可能用這公式直接求出原矩陣的特徵向量而不用像文中一樣用一堆參數去算
綜合 Quanta 的文章和這篇百科條目看起來, 有可能說不定這些特徵值能/需要實測求得
若是這樣的話就可以藉由測得的這些特徵值反推特徵向量甚或原矩陣
※ 編輯: LPH66 (180.217.154.241 臺灣), 11/24/2019 12:01:47
推
11/24 22:24,
6年前
, 6F
11/24 22:24, 6F
→
11/25 09:15,
6年前
, 7F
11/25 09:15, 7F
→
11/25 13:23,
6年前
, 8F
11/25 13:23, 8F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):