Re: [高微] A,B closed 判斷A+B是否closed

看板Math作者 (chemmachine)時間7年前 (2018/07/16 01:45), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串4/4 (看更多)
※ 引述《IminXD (Encore LaLa)》之銘言: : 題目是: Let A,B ≦ R^n be closed set. : Does A+B = {x+y | x€A and y€B} have to be closed? : 解答是找例子 A={(x,0) €R^2 | x€R} : B={(t,1/t) €R^2 | t>0} : 我自己是從定義著手 : A is closed => (R^n - A) is open : B is closed => (R^n - B) is open : to defined whether A+B is closed or not,we consider R^n-(A+B) : R^n-(A+B) = R^n-A-B = (R^n-A)-B : since R^n-A is open , and B is close : => R^n-(A+B) is not open : Hence A+B is not closed ## : 問題點就是說 open - closed = closed 能不能推過去.. : 感覺這個也是要舉例證明.....囧 reference: https://math.stackexchange.com/questions/216334/closed-subsets-a-b-subset-mathbbr2-so-that-ab-is-not-closed 考慮A=Z^+,B={n+1/(n+1)n|n屬於Z^+} 則B-A={1/(n+1)|n屬於Z^+} is not closed. 現在令A'=-A,B'=B both closed 則A'+B'is not closed. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.33.26.34 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1531676710.A.EC5.html
文章代碼(AID): #1RIuWcx5 (Math)
文章代碼(AID): #1RIuWcx5 (Math)