Re: [高微] 證明數列收斂
※ 引述《IminXD (Encore LaLa)》之銘言:
: 題目:Let Sn be a bounded sequence of real numbers. Assume 2Sn≦S_n-1 + S_n+1
: Show that lim ( S_n+1 - Sn ) = 0
2S_n<=S_n-1+S_n+1 可推得S_n-S_n-1<=S_n+1-S_n
a_n<=a_n+1 a_n為非嚴格遞增數列。
故聯想到least upper bound property
claim a_n bounded
因s_n bounded
a_n=S_n-S_n-1 |a_n|=|S_n-S_n-1|<=|S_n|+|S_n-1|<=M_1+M_2 for finite M_1、
M_2
故a_n bounded
a_n 為非遞減數列且有上界,故a_n收斂至一有限實數L。
Lim_n->infinity a_n=L
Now claim L=0
因L為sequence a_n附著點(adherent point),除有限的點之外,有無限的點包含在一
任意小球B(L;episilon),故有無限個數值a_i和L極為接近,故若L不等於0,
比如L>0,則S_n->+infinity,L<0,則S_n->-infinity。
使用episilon-delta 語言為
for any episilon>0,there exist finite positive integer N s.t.
for any n>N,L-episilon<a_n<L+episilon
故L-episilon<a_n-1<L+episilon,
L-episilon<a_n-2<L+episilon....
L-episilon<a_N+1<L+episilon
sums all
(n-N)(L-episilon)<a_N+1+.....a_n <(n-N)(L+episilon)
add a_1+a_2+....a_N to every side of inequality
we have a_1+a_2+..a_N+(n-N)(L-episilon)<S_n<a_1+.....a_N+(n-N)(L+episilon)
fix N,let n->infinity,since episilon is arbitrary,若L>0或L<0,則
S_n發散,與假設矛盾,故L=0
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.33.26.34
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1531672570.A.F69.html
討論串 (同標題文章)