Re: [高微] 證明數列收斂
今天想了一下,做a_n會卡,所以乾脆用Sn來做試試看
上半部一樣
: If 2Sn ≦ S_n-1 + S_n+1
: => Sn + Sn ≦ S_n-1 + S_n+1
: => Sn - S_n-1 ≦ S_n+1 - Sn
: => a_n ≦ a_n+1
Since S_n+1 = Sn + a_n+1
=> Sn is increasing and bounded above
=> lim Sn = M exists
n->∞
for all ε> 0 , there is a k€N ,s.t. |Sn-M|<ε/2 for all n≧k
|S_n+1 - Sn|=|S_n+1 -M +M -Sn|≦|S_n+1 -M|+|M -Sn|≦ε/2 + ε/2 = ε
=> lim ( S_n+1 - Sn ) = 0
n->∞
感覺這樣寫就可以了..不知道這個方向的想法是否正確?
※ 引述《IminXD (Encore LaLa)》之銘言:
: 題目:Let Sn be a bounded sequence of real numbers. Assume 2Sn≦S_n-1 + S_n+1
: Show that lim ( S_n+1 - Sn ) = 0
: n->∞
: 我的作法是這樣..
: Let a_n+1 = Sn+1 - S_n
: If 2Sn ≦ S_n-1 + S_n+1
: => Sn + Sn ≦ S_n-1 + S_n+1
: => Sn - S_n-1 ≦ S_n+1 - Sn
: => a_n ≦ a_n+1
: ==> <a_n> is a increasing seq.
: Sn + Sn ≦ S_n-1 + S_n+1
: => Sn - S_n+1 ≦ S_n-1 - Sn
: Since Sn be a bounded sequence, |Sn| ≦ M with M€R ((屬於不會打QQ
: => |a_n+1| ≦ |Sn - S_n+1| ≦ |Sn| + |S_n+1| ≦ 2M
: => <a_n> is bounded
: Cause <a_n> is increasing and bounded above
: => <a_n> converges
: 後面的部份我不知道該怎麼證明lim (S_n+1 - Sn) = 0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.42.91.161
推
11/29 21:33, , 1F
11/29 21:33, 1F
→
11/29 22:02, , 2F
11/29 22:02, 2F
→
11/29 22:02, , 3F
11/29 22:02, 3F
→
11/29 22:03, , 4F
11/29 22:03, 4F
推
11/29 22:11, , 5F
11/29 22:11, 5F
→
11/29 22:12, , 6F
11/29 22:12, 6F
所以我在用Since S_n+1 = Sn + a_n+1就該先討論嗎?
if a_n ≧ 0,S_n+1 = Sn + a_n+1 for all n€N
=> Sn is increasing and bounded above
if a_n < 0,S_n+1 = Sn + a_n+1 for all n€N
=> Sn is decreasing and bounded below
and so lim Sn = M exists
如果這樣子寫呢? 因為我從式子裡面看不出來a_n是恆負這件事阿QQ
※ 編輯: IminXD 來自: 114.42.91.161 (11/29 22:33)
推
11/29 23:19, , 7F
11/29 23:19, 7F
→
11/29 23:34, , 8F
11/29 23:34, 8F
推
11/29 23:47, , 9F
11/29 23:47, 9F
討論串 (同標題文章)