Re: [高微] 證明數列收斂

看板Math作者 (Encore LaLa)時間14年前 (2011/11/29 20:23), 編輯推噓4(405)
留言9則, 3人參與, 最新討論串2/5 (看更多)
今天想了一下,做a_n會卡,所以乾脆用Sn來做試試看 上半部一樣 : If 2Sn ≦ S_n-1 + S_n+1 : => Sn + Sn ≦ S_n-1 + S_n+1 : => Sn - S_n-1 ≦ S_n+1 - Sn : => a_n ≦ a_n+1 Since S_n+1 = Sn + a_n+1 => Sn is increasing and bounded above => lim Sn = M exists n->∞ for all ε> 0 , there is a k€N ,s.t. |Sn-M|<ε/2 for all n≧k |S_n+1 - Sn|=|S_n+1 -M +M -Sn|≦|S_n+1 -M|+|M -Sn|≦ε/2 + ε/2 = ε => lim ( S_n+1 - Sn ) = 0 n->∞ 感覺這樣寫就可以了..不知道這個方向的想法是否正確? ※ 引述《IminXD (Encore LaLa)》之銘言: : 題目:Let Sn be a bounded sequence of real numbers. Assume 2Sn≦S_n-1 + S_n+1 : Show that lim ( S_n+1 - Sn ) = 0 : n->∞ : 我的作法是這樣.. : Let a_n+1 = Sn+1 - S_n : If 2Sn ≦ S_n-1 + S_n+1 : => Sn + Sn ≦ S_n-1 + S_n+1 : => Sn - S_n-1 ≦ S_n+1 - Sn : => a_n ≦ a_n+1 : ==> <a_n> is a increasing seq. : Sn + Sn ≦ S_n-1 + S_n+1 : => Sn - S_n+1 ≦ S_n-1 - Sn : Since Sn be a bounded sequence, |Sn| ≦ M with M€R ((屬於不會打QQ : => |a_n+1| ≦ |Sn - S_n+1| ≦ |Sn| + |S_n+1| ≦ 2M : => <a_n> is bounded : Cause <a_n> is increasing and bounded above : => <a_n> converges : 後面的部份我不知道該怎麼證明lim (S_n+1 - Sn) = 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.42.91.161

11/29 21:33, , 1F
其實Sn不會是遞增的,因為每個a_n都是負的
11/29 21:33, 1F

11/29 22:02, , 2F
但是我知道a_n ≦ a_n+1 而S_n+1 = Sn + a_n+1
11/29 22:02, 2F

11/29 22:02, , 3F
後一項一定比前一項還要大 累加上去..
11/29 22:02, 3F

11/29 22:03, , 4F
題目已知有界,所以從遞增、有上界=>數列收斂 著手
11/29 22:03, 4F

11/29 22:11, , 5F
你要加正的數字上去sn才會越來越大,但a_n是恆負的
11/29 22:11, 5F

11/29 22:12, , 6F
所以Sn是遞減有下界這樣
11/29 22:12, 6F
所以我在用Since S_n+1 = Sn + a_n+1就該先討論嗎? if a_n ≧ 0,S_n+1 = Sn + a_n+1 for all n€N => Sn is increasing and bounded above if a_n < 0,S_n+1 = Sn + a_n+1 for all n€N => Sn is decreasing and bounded below and so lim Sn = M exists 如果這樣子寫呢? 因為我從式子裡面看不出來a_n是恆負這件事阿QQ ※ 編輯: IminXD 來自: 114.42.91.161 (11/29 22:33)

11/29 23:19, , 7F
no....not correct....
11/29 23:19, 7F

11/29 23:34, , 8F
為什麼@@
11/29 23:34, 8F

11/29 23:47, , 9F
18035篇的推文中有說明
11/29 23:47, 9F
文章代碼(AID): #1ErCwzMS (Math)
文章代碼(AID): #1ErCwzMS (Math)