Re: [中學] 二階方陣與線性變換
※ 引述《Intercome (今天的我小帥)》之銘言:
: 平面上有L1:2x-y+3 = 0,經過A的二階方陣轉換後,會變成L2:3x-7y+15 = 0
: 則二階方陣A為何?
: -- --
: 答案:A = | 1 3|
: | -1 2|
: -- --
: 我的想法是先找出L1和L2的交點(-6/11, 21/11)經過A轉換不變
: 再由L1上找點(-3/2, 0)與(0, 3)經過A轉換後,代入L2再解聯立
: 可是找不到正確答案,再請版上高手指教,謝謝!
應有無窮多組解
A = [a b]
[c d]
C_1 = (a, c)
C_2 = (b, d)
k = (3, -7)
過L_1的有(0, 3), (-1, 1)
X' = AX
k * 3C_2 = -15 => k * C_2 = -5
k * (-C_1 + C_2) = -15 => k * C_1 = 10
只要滿足上式的a, b, c, d皆可為解
除了解答以外的矩陣
例如[10/3 2/3]
[ 0 1 ]
也是一個解
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.56.10.112
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1495514748.A.60C.html
推
05/23 13:24, , 1F
05/23 13:24, 1F
推
05/23 14:19, , 2F
05/23 14:19, 2F
→
05/23 14:19, , 3F
05/23 14:19, 3F
→
05/23 14:20, , 4F
05/23 14:20, 4F
→
05/23 14:23, , 5F
05/23 14:23, 5F
→
05/23 14:34, , 6F
05/23 14:34, 6F
→
05/23 14:34, , 7F
05/23 14:34, 7F
→
05/23 14:40, , 8F
05/23 14:40, 8F
推
05/23 14:47, , 9F
05/23 14:47, 9F
→
05/23 14:48, , 10F
05/23 14:48, 10F
→
05/23 14:49, , 11F
05/23 14:49, 11F
推
05/23 15:08, , 12F
05/23 15:08, 12F
推
05/23 15:17, , 13F
05/23 15:17, 13F
推
05/23 15:18, , 14F
05/23 15:18, 14F
推
05/23 16:27, , 15F
05/23 16:27, 15F
討論串 (同標題文章)