Re: [微積] ln(1+x)的不等式
我覺得這應該不是出題者的解法...
Let F(t) = t - t^2/2 + t^3/3 * 1/(1+t) + c, where c is a constant
thus F(0) = c. Let G(t) = ln(1+t)
Let H(t) = F'(t) = 1/(1+t) - t^3/3 * 1/(1+t)^2, G'(t) = 1/(1+t)
obviously, H(t) < G'(t) ∀ t > 0, H(0) = G'(0) = 0
x x x
therefore, ∫ H(t) dt < ∫ G'(t) dt, and ∫ H(t) dt = F(x) - F(0)
0 0 0
希望有高手能用原PO的脈絡做出來,或是有別的比較漂亮的解法
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.163.240.195
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1468223892.A.AE7.html
推
07/11 20:58, , 1F
07/11 20:58, 1F
→
07/11 20:59, , 2F
07/11 20:59, 2F
→
07/11 20:59, , 3F
07/11 20:59, 3F
→
07/11 21:01, , 4F
07/11 21:01, 4F
推
07/11 21:03, , 5F
07/11 21:03, 5F
討論串 (同標題文章)
完整討論串 (本文為第 2 之 3 篇):
微積
4
9