[微積] ln(1+x)的不等式
[題目]
試證明對於所有x > 0
x - x^2/2 + x^3/3 * 1/(1+x) < ln(1+x) < x - x^2/2 + x^3/3
[我的想法]
我目前可以用泰勒展開式做出右邊的不等式,
利用ln(1+x) = x - x^2/2 + x^3/3 * 1/(1+c)^3 (0 < c < x)
又(1+x)^(-3)為遞減,代入x = 0就有右邊的不等式
但左邊多乘上1/(1+x)就不曉得該如何處理,
有請各位大大救一下,感謝各位m(_ _)m
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.230.128.229
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1468174350.A.BE9.html
→
07/11 11:31, , 1F
07/11 11:31, 1F
嗯,我沒有表達很清楚,重寫一下:
ln(1+x) = x - x^2/2 + x^3/3 * 1/(1+c)^3 --- Taylor expansion, 0 < c < x
< x - x^2/2 + x^3/3 * 1/(1+0)^3 --- 1/(1+t)^3 嚴格遞減,取t = 0
= x - x^2/2 + x^3/3 --- RHS
※ 編輯: zxm20243 (118.163.127.250), 07/11/2016 13:20:42
→
07/11 14:05, , 2F
07/11 14:05, 2F
https://goo.gl/D5fDy1
https://en.wikipedia.org/wiki/Taylor%27s_theorem
#Explicit_formulas_for_the_remainder
→
07/11 14:47, , 3F
07/11 14:47, 3F
推
07/11 14:50, , 4F
07/11 14:50, 4F
推
07/11 14:52, , 5F
07/11 14:52, 5F
推
07/11 14:53, , 6F
07/11 14:53, 6F
→
07/11 16:34, , 7F
07/11 16:34, 7F
我不太確定我這個講法對不對,
因為我是重新念一次微積分,但如果只用Taylor theorem的話,
我想應該可以不用考慮收斂半徑?
→
07/11 18:56, , 8F
07/11 18:56, 8F
※ 編輯: zxm20243 (61.230.128.229), 07/11/2016 21:24:16
推
07/11 22:39, , 9F
07/11 22:39, 9F
討論串 (同標題文章)