Re: [中學] 求梯形面積

看板Math作者時間9年前 (2016/06/06 16:12), 9年前編輯推噓5(504)
留言9則, 3人參與, 最新討論串4/5 (看更多)
※ 引述《cat91 (可樂貓)》之銘言: : http://imgur.com/DPl27Kd
: 如圖 : ABCD為等腰梯形 : 以AD和BC為斜邊作等腰直角三角形ASD&QBC : 延QB,QC,SA,SD交於P,R : 已知AS+BQ=10,PQRS周長=50 : 請求出ABCD面積 : P.S.這是自己想出的題 因為三角形ASD與三角形BCQ為等腰直角三角形 =>上底+下底=線段BC+線段AD=線段BQ√2+線段AS√2=(線段BQ+線段AS)√2=10√2 因為三角形ASD與三角形BCQ為等腰直角三角形、且ABCD為等腰梯形 所以角QBC=角QCB=角SAD=角SDA=45度、角CBA=角BCD、角BAD=角CDA =>角PBA=角RCD、角CDR=角BAP 且線段AB=線段CD =>三角形BAP與三角形CDR ASA全等 因為 線段PB=線段CR、線段BQ=線段CQ, 且線段PB與線段BQ、線段QC與線段CR分別在同一直線上, 且角PQR、角PSR皆為直角 =>四邊形PQRS為正方形 令線段BC中點為M、線段AD中點為N 高=線段QS-線段QM-線段SN 因為PQRS為正方形,且周長為50 =>正方形PQRS邊長為50/4 =>線段QS為25√2/2 因為三角形ASD與三角形BCQ為等腰直角三角形,且M、N分別為斜邊中點 所以線段QM平分角BQC並垂直於線段BC、線段SN平分角ASD並垂直線段AD, 且三角形ASN與三角形BQM為等腰直角三角形 =>線段QM+線段SN=線段BQ/√2+線段AS/√2=(線段BQ+線段AS)/√2=5√2 高=線段QS-(線段QM+線段SN)=25√2/2-5√2=15√2/2 梯形ABCD面積=(上底+下底)*高/2 =>10√2*15√2/2/2=75 ------------以上是經原討論串留言提醒後想出來的--------------------- 原本以為證明PQRS為正方形後QMNS自然會在同一直線上 但左思右想後發現PQRS是否為正方形 跟那四點是否在同一直線上很像沒有關係 所以想借串問一下,要怎麼證明他們在同一直線上 目前想法是很像可以利用相似三角形,沿著直線PQ與直線SQ做縮放 可是不知道要怎麼得到他們在同一直線的結論 或是令直線QS在線段BC的交點為M'、直線在線段AD的焦點為N', 只要能證明M'=M、N'=N,應該就可以說明他們在同一直線上 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.172.116.46 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1465200777.A.303.html ※ 編輯: carzyallen (1.172.116.46), 06/06/2016 16:15:18

06/06 16:18, , 1F
沒那麼難,根據對稱性,PQRS是箏形
06/06 16:18, 1F

06/06 16:18, , 2F
同時PQRS是長方形,所以就是正方形
06/06 16:18, 2F

06/06 16:18, , 3F
你要問的問題也可用對稱性解決
06/06 16:18, 3F

06/06 16:24, , 4F
弱弱的問一下對稱性是什麼,跟口語俗稱的對稱一樣嗎
06/06 16:24, 4F

06/06 16:27, , 5F
題目的所有敘述,都對QS直線鏡射對稱
06/06 16:27, 5F
假如要證明的話要怎麼證明直線QS為本圖中的對稱軸? ※ 編輯: carzyallen (1.172.116.46), 06/06/2016 17:15:46

06/06 20:27, , 6F
因 abcd sad bcq等腰
06/06 20:27, 6F

06/06 21:33, , 7F
等腰直角三角形的對稱 -> 垂直, 中點
06/06 21:33, 7F

06/06 21:34, , 8F
其實是很直觀的事情,我不曉得你是卡在哪一點
06/06 21:34, 8F

06/06 21:37, , 9F
由垂直, 中點,得到兩個三角形的對稱軸與梯形的重合
06/06 21:37, 9F
文章代碼(AID): #1NLJ29C3 (Math)
討論串 (同標題文章)
文章代碼(AID): #1NLJ29C3 (Math)