Re: [微積] 請問數題微積分,謝謝.

看板Math作者 (-6.2598534e+18f)時間10年前 (2015/07/01 14:27), 10年前編輯推噓3(301)
留言4則, 3人參與, 最新討論串2/3 (看更多)
※ 引述《llww (開心渡過每一天)》之銘言: : http://imgur.com/CJJ2IXa
: 如上面網址圖片, 填充第6,8,9題以及計算第3題, : 拜託各位高手了,想好久都算不出來. 計算3 令 x = tan t, 則 1+x^2 = sec^2 t, dx = sec^2 t dt 即 dx/(1+x^2) = dt x + 1/x = (x^2+1)/x = sec^2 t / tan t = sin t / cos^3 t 原式成為 π/2 ∫ ln (sin t / cos^3 t) dt 0 π/2 = ∫ (ln sin t - 3 ln cos t) dt 0 π/2 π/2 由變數變換可知 I = ∫ ln sin t dt = ∫ ln cos t dt 0 0 而此積分可由此兩形式相加算得 I = -πln2 / 2 (過程略) 故原式 = -2I = πln2 # --- 剛才想了一下, x + 1/x 那裡可以這樣接: x + 1/x = sin t / cos t + cos t / sin t = 1 / (sin t cos t) π/2 π/2 原式變成 ∫ ln (1 / sin t cos t) dt = - ∫ ln (sin t cos t) dt 0 0 這即是上面 I 的兩形式相加的積分, 所以可以從那裡直接算得原式 = -2I = πln2 -- 'You've sort of made up for it tonight,' said Harry. 'Getting the sword. Finishing the Horcrux. Saving my life.' 'That makes me sound a lot cooler then I was,' Ron mumbled. 'Stuff like that always sounds cooler then it really was,' said Harry. 'I've been trying to tell you that for years.' -- Harry Potter and the Deathly Hollows, P.308 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.30.32 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1435732059.A.B7E.html

07/01 14:37, , 1F
謝謝L大
07/01 14:37, 1F
※ 編輯: LPH66 (140.112.30.32), 07/01/2015 14:45:03

07/01 14:45, , 2F
第一行應該是 sec^2 t / tan t = 1 / (sint*cost)
07/01 14:45, 2F

07/01 14:47, , 3F
補在下面了 XD
07/01 14:47, 3F

07/01 14:49, , 4F
嗯嗯XD!
07/01 14:49, 4F
文章代碼(AID): #1LauXRj- (Math)
文章代碼(AID): #1LauXRj- (Math)