[中學] 關於平面與兩點的極值問題?
就是如果給一個平面E,跟給空間中兩點A跟B,假設這兩點在平面同側。
求下列條件如何找P點?
(1)PA線段+PB線段的min
(2)(PA線段)^2+(PB線段)^2的min
我的疑問是:
1.第一題很簡單,只要找出A對平面的對稱點連到B,與平面交於P,
但是第二題怎麼找P點呢?
2.印象中曾經做過先找AB線段的中點,再投影到平面上得到P點,
而這樣找到的P點所具有的性質會是什麼樣的題目所問的呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 175.180.255.127
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1428511953.A.540.html
→
04/09 00:54, , 1F
04/09 00:54, 1F
→
04/09 00:54, , 2F
04/09 00:54, 2F
→
04/09 00:55, , 3F
04/09 00:55, 3F
→
04/09 00:55, , 4F
04/09 00:55, 4F
→
04/09 00:58, , 5F
04/09 00:58, 5F
推
04/09 01:03, , 6F
04/09 01:03, 6F
→
04/09 01:05, , 7F
04/09 01:05, 7F
→
04/09 01:06, , 8F
04/09 01:06, 8F
→
04/09 01:06, , 9F
04/09 01:06, 9F
→
04/09 01:07, , 10F
04/09 01:07, 10F
→
04/09 01:07, , 11F
04/09 01:07, 11F
→
04/09 01:08, , 12F
04/09 01:08, 12F
→
04/09 01:09, , 13F
04/09 01:09, 13F
→
04/09 01:10, , 14F
04/09 01:10, 14F
→
04/09 01:10, , 15F
04/09 01:10, 15F
→
04/09 01:10, , 16F
04/09 01:10, 16F
→
04/09 01:21, , 17F
04/09 01:21, 17F
→
04/09 01:33, , 18F
04/09 01:33, 18F
→
04/09 01:34, , 19F
04/09 01:34, 19F
→
04/09 01:34, , 20F
04/09 01:34, 20F
→
04/09 01:35, , 21F
04/09 01:35, 21F
→
04/09 01:41, , 22F
04/09 01:41, 22F
→
04/09 01:42, , 23F
04/09 01:42, 23F
→
04/09 01:44, , 24F
04/09 01:44, 24F
→
04/09 01:44, , 25F
04/09 01:44, 25F
→
04/09 01:49, , 26F
04/09 01:49, 26F
→
04/09 01:59, , 27F
04/09 01:59, 27F
推
04/09 01:59, , 28F
04/09 01:59, 28F
討論串 (同標題文章)