Re: [分析] 台大102高微

看板Math作者 (生死間有大恐怖)時間11年前 (2015/01/30 02:26), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串4/4 (看更多)
※ 引述《kerwinhui (kezza)》之銘言: : : Let g(x,y) be a function satisfying : : -1 < g(x,y) < 1 for x in R , y > 1, and : : ln[(1+g(x,y))/(1-g(x,y))] + (2y)arctan[yg(x,y)] = 2(1+y^2)x : : a) Show that g(x,y) is increasing in x (用反證,已解決) : : b) Find lim(y->oo) g(x,y) : : c) 證明 g(x,y) 在其定義域上可微 : : d) 求 lim(y->oo) g_x(x,y) d) 我想到一個作法,不知道可不可以 g_x(x,y) = [1-g^2(x,y)][1+(y^2)(g^2(x,y))] 又 x>0 => g(x,y) -> 1 as y -> oo x<0 => g(x,y) -> -1 as y -> oo x=0 => g(x,y) -> 0 as y -> oo 1) x=0 時原方程式為 ln[(1+g(0,y))/(1-g(0,y))] + (2y)arctan[yg(0,y)] = 0 讓 y->oo => 0 + (oo) * arctan[lim(y->oo) yg(0,y)] = 0 故 lim(y->oo) yg(0,y) 必為 0 => g_x(0,y) = [1-g^2(0,y)][1+(y^2)(g^2(0,y))] -> (1-0)(1+0^2) = 1 as y -> oo 2) x>0 時原方程式兩邊同除以 (1+g)(1-g) 再讓 y -> oo 則等號左邊為 ln[(1+g)/(1-g)]/[(1+g)/(1-g)] -> 0 as y -> oo (同 lim(y->oo) (lny)/y = 0) 等號右邊整理後 2x(1-g) + 2x(y^2)(1-g) - 2y(1-g)arctan(yg) = lim(y->oo) ------------------------------------------- (*) 1 + g 2x(1-g) + 2y(1-g)[xy - arctan(yg)] = lim(y->oo) ----------------------------------- 1 + g 0 + [lim(y->oo) 2y(1-g)]*[oo - pi/2] = ------------------------------------- = 0 2 故 lim(y->oo) y(1-g) 必為 0,代入 (*) 0 + 2x[lim(y->oo) (y^2)(1-g)] - [0 * (pi/2)] => --------------------------------------------- = 0 2 故 lim(y->oo) (y^2)(1-g) 必為 0,代回原式 => g_x(x,y) = [1-g^2(x,y)][1+(y^2)(g^2(x,y))] = (1+g){(1-g)[1+(y^2)(g^2)]} = (1+g){(1-g) + [(1-g)y^2]g^2} -> 2 * (0 + 0 * 1^2) = 0 as y -> oo # x< 0 時 作法類似 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.40.26.42 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1422555977.A.412.html
文章代碼(AID): #1Kodj9GI (Math)
文章代碼(AID): #1Kodj9GI (Math)