Re: [中學] 三次多項式三根成等差

看板Math作者 (希望願望成真)時間11年前 (2014/12/04 23:23), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/3 (看更多)
※ 引述《magiclass (課堂上玩數學)》之銘言: : 三次多項式x^3+ax^2+bx+2=0的三根成等差, : 且a,b皆為整數。 : 求a=? b=? x(x - r)(x + r) = x(x^2 - r^2) = x^3 - xr^2 (x - k)^3 - (x - k)r^2 = x^3 + ax^2 + bx + 2 = x^3 - 3kx^2 + x[3k^2 - r^2] - k^3 + kr^2 2 = kr^2 - k^3 = -k(k^2 - r^2) a = -3k b = 3k^2 - r^2 6 = a[b - (2 / 9) a^2] => 54 = a[9b - 2a^2] 滿足上是關係的(a, b)都是 a = 3, b = 4 公差為i! a = 6, b = 9 a = -3, b = 0 a = -6, b = 7 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.44.248.188 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1417706629.A.4D1.html
文章代碼(AID): #1KW7o5JH (Math)
文章代碼(AID): #1KW7o5JH (Math)