[線代] inverse integer 證明題
Definition: If a is a number in Zm, then a number, denoted a^(-1), in Zn is called the multiplicative inverse of a if a*a^(-1)=1(mod m)
For example, m=26, then
a a^(-1)
1, 1 ------->1*1=1=26*0+1
3, 9 ------->3*9=27=26*1+1
5, 21------->5*21=105=26*4+1
7, 15
9, 3
11, 19
15, 7
17, 23
19, 11
21, 5
23, 17
25, 25
Proof: Given invertible integers a, b in Zm where a+b=m, then a^(-1)+b^(-1)=m
For example, m=26,a=3, b=23
Then a^(-1)=9 and b^(-1)=17. a+b= a^(-1)+ b^(-1)=26=m
想了三天 投降
請問有人可以幫忙嗎
不確定記號有沒有別的表示方法,總之a^(-1)在這裡我是指a的inverse,不是倒數
先謝謝了,有題目表達不清楚的話請告訴我,我盡我所能解釋
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 166.137.186.92
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1403260730.A.288.html
→
06/20 18:48, , 1F
06/20 18:48, 1F
→
06/20 18:48, , 2F
06/20 18:48, 2F
→
06/20 18:58, , 3F
06/20 18:58, 3F
→
06/20 18:59, , 4F
06/20 18:59, 4F
→
06/20 19:10, , 5F
06/20 19:10, 5F
→
06/20 19:12, , 6F
06/20 19:12, 6F

→
06/20 19:13, , 7F
06/20 19:13, 7F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 3 篇):