Re: [中學] 二次方程式
※ 引述《orange519 (aoi)》之銘言:
: a, b, c為整數,a>0
: 方程式y=ax^2-2bx+c和x軸有交點,
唯一交點?
y = a(x - b/a)^2 + (ac - b^2)/a
= a(x-r)^2
= ax^2 - 2arx + ar^2
2b = 2ar
ar^2 = c
a + c = a(1 + r^2) = a(1 - r)^2 + 2ar > 0
=> a + c = a(1 - r)^2 + 2b > 2b
=> a + c > 2b
0 < b/a < 1
=> 0 < b < a
ac - b^2 = 0
=> a/b = b/c > 1
=> a > b > c
c = 1, b = 2 => a = b^2 = 4
: 且其交點位於0<x<1內,
: 想請教版友
: 2b與a+c的大小關係
: 跟
: a, b, c最小的整數
: 答案分別是2b<a+c, a=4 b=2 c=1
: 我是在求出ac=b^2後硬代求出答案,但想請問是否有比較正確的解法呢?
: 謝謝大家
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.228.129.151
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1402507489.A.6BF.html
→
06/12 01:38, , 1F
06/12 01:38, 1F
→
06/12 01:43, , 2F
06/12 01:43, 2F
→
06/12 01:43, , 3F
06/12 01:43, 3F
→
06/12 01:44, , 4F
06/12 01:44, 4F
→
06/12 02:11, , 5F
06/12 02:11, 5F
→
06/12 02:21, , 6F
06/12 02:21, 6F
→
06/12 02:22, , 7F
06/12 02:22, 7F
→
06/12 14:12, , 8F
06/12 14:12, 8F
→
06/12 14:14, , 9F
06/12 14:14, 9F
→
06/12 14:15, , 10F
06/12 14:15, 10F
→
06/12 14:15, , 11F
06/12 14:15, 11F
推
06/12 14:31, , 12F
06/12 14:31, 12F
→
06/12 14:32, , 13F
06/12 14:32, 13F
→
06/12 14:33, , 14F
06/12 14:33, 14F
推
06/12 14:36, , 15F
06/12 14:36, 15F
→
07/07 12:14,
6年前
, 16F
07/07 12:14, 16F
討論串 (同標題文章)